Chiral Torsion and its quantum effects

Amitabha Lahiri

S. N. Bose National Centre for Basic Sciences

Block JD, Sector III, Salt Lake, Kolkata, INDIA

Future Trends in Gravitational Physics

SNBNCBS, 10th February 2022

(□) (n)

Dirac matrices defined on "internal" flat space, $\left[\gamma^a,\gamma^b\right]_+ = \eta^{ab}$

- Dirac matrices defined on "internal" flat space, $\left[\gamma^a,\gamma^b\right]_+ = \eta^{ab}$
- Tetrad fields e^a_μ relate spacetime with internal flat space

- Dirac matrices defined on "internal" flat space, $\left[\gamma^a,\gamma^b\right]_+ = \eta^{ab}$
- Tetrad fields e^a_μ relate spacetime with internal flat space

$$
\bullet \ \ \eta_{ab}e^a_\mu e^b_\nu=g_{\mu\nu}\,; \qquad g^{\mu\nu}e^a_\mu e^b_\nu=\eta^{ab}\,,
$$

- Dirac matrices defined on "internal" flat space, $\left[\gamma^a,\gamma^b\right]_+ = \eta^{ab}$
- Tetrad fields e^a_μ relate spacetime with internal flat space
	- $\eta_{ab}e^a_\mu e^b_\nu = g_{\mu\nu}\, ; \qquad g^{\mu\nu}e^a_\mu e^b_\nu = \eta^{ab}\, ,$
	- $e^{\mu}_a = \eta_{ab} g^{\mu\nu} e^b_{\nu}$ is inverse tetrad, $e^{\mu}_a e^a_{\nu} = \delta^{\mu}_{\nu}$

(ロ) (個) (差) (差)

- Dirac matrices defined on "internal" flat space, $\left[\gamma^a,\gamma^b\right]_+ = \eta^{ab}$
- Tetrad fields e^a_μ relate spacetime with internal flat space

•
$$
\eta_{ab} e^a_\mu e^b_\nu = g_{\mu\nu}
$$
; $g^{\mu\nu} e^a_\mu e^b_\nu = \eta^{ab}$,

- $e^{\mu}_a = \eta_{ab} g^{\mu\nu} e^b_{\nu}$ is inverse tetrad, $e^{\mu}_a e^a_{\nu} = \delta^{\mu}_{\nu}$
- $\gamma_\mu=e_\mu^a\gamma_a$ satisfies $\left[\gamma_\mu\,,\gamma_\nu\right]_+=2g_{\mu\nu} \quad$ (will use both γ^a and γ^μ as convenient)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

- Dirac matrices defined on "internal" flat space, $\left[\gamma^a,\gamma^b\right]_+ = \eta^{ab}$
- Tetrad fields e^a_μ relate spacetime with internal flat space
	- $\eta_{ab}e^a_\mu e^b_\nu = g_{\mu\nu}\, ; \qquad g^{\mu\nu}e^a_\mu e^b_\nu = \eta^{ab}\, ,$
	- $e^{\mu}_a = \eta_{ab} g^{\mu\nu} e^b_{\nu}$ is inverse tetrad, $e^{\mu}_a e^a_{\nu} = \delta^{\mu}_{\nu}$
- $\gamma_\mu=e_\mu^a\gamma_a$ satisfies $\left[\gamma_\mu\,,\gamma_\nu\right]_+=2g_{\mu\nu} \quad$ (will use both γ^a and γ^μ as convenient)
- Dirac operator *i*∂ψ/ on flat space becomes *iD*/ψ on curved spacetime

 Ω

(ロ) (個) (星) (星)

- Dirac matrices defined on "internal" flat space, $\left[\gamma^a,\gamma^b\right]_+ = \eta^{ab}$
- Tetrad fields e^a_μ relate spacetime with internal flat space
	- $\eta_{ab}e^a_\mu e^b_\nu = g_{\mu\nu}\, ; \qquad g^{\mu\nu}e^a_\mu e^b_\nu = \eta^{ab}\, ,$
	- $e^{\mu}_a = \eta_{ab} g^{\mu\nu} e^b_{\nu}$ is inverse tetrad, $e^{\mu}_a e^a_{\nu} = \delta^{\mu}_{\nu}$
- $\gamma_\mu=e_\mu^a\gamma_a$ satisfies $\left[\gamma_\mu\,,\gamma_\nu\right]_+=2g_{\mu\nu} \quad$ (will use both γ^a and γ^μ as convenient)
- Dirac operator *i*∂ψ/ on flat space becomes *iD*/ψ on curved spacetime
- Requires spin connection A_μ : $D_\mu \psi = \partial_\mu \psi \frac{i}{4} A_\mu^{ab} \sigma_{ab} \psi$

 $\sigma_{ab} = \frac{i}{2} [\gamma_a, \gamma_b]$

 Ω

(ロ) (個) (星) (星)

- Dirac matrices defined on "internal" flat space, $\left[\gamma^a,\gamma^b\right]_+ = \eta^{ab}$
- Tetrad fields e^a_μ relate spacetime with internal flat space
	- $\eta_{ab}e^a_\mu e^b_\nu = g_{\mu\nu}\, ; \qquad g^{\mu\nu}e^a_\mu e^b_\nu = \eta^{ab}\, ,$
	- $e^{\mu}_a = \eta_{ab} g^{\mu\nu} e^b_{\nu}$ is inverse tetrad, $e^{\mu}_a e^a_{\nu} = \delta^{\mu}_{\nu}$
- $\gamma_\mu=e_\mu^a\gamma_a$ satisfies $\left[\gamma_\mu\,,\gamma_\nu\right]_+=2g_{\mu\nu} \quad$ (will use both γ^a and γ^μ as convenient)
- Dirac operator *i*∂ψ/ on flat space becomes *iD*/ψ on curved spacetime
- Requires spin connection A_μ : $D_\mu \psi = \partial_\mu \psi \frac{i}{4} A_\mu^{ab} \sigma_{ab} \psi$

 $\sigma_{ab} = \frac{i}{2} [\gamma_a, \gamma_b]$

 $\nabla_{\mu}\gamma_{\nu}=0 \quad \Rightarrow \quad \nabla_{\mu}e_{\nu}^{a}=0$ $\Rightarrow \quad e^{\lambda}_a \partial_\mu e^a_\nu + A^a_{\mu b} e^b_\nu e^\lambda_a - \Gamma^\lambda_{\mu\nu} = 0 \quad \text{ ``tetrad postulate''}$

イロメ イ母メ イヨメ イヨメーヨ

 \mathfrak{G}

 QQ

Can write gravity as a gauge theory with spin connection as the gauge field

4 ロト 4 旬

- → 三

- Can write gravity as a gauge theory with spin connection as the gauge field
- Field strength $F_{\mu\nu}^{ab} = \partial_{\mu}A_{\nu}^{ab} \partial_{\nu}A_{\mu}^{ab} + A_{\mu}^{ac}A_{\nu}^{cb} A_{\nu}^{ac}A_{\mu}^{cb}$

メロトメ 伊 トメ ミトメ ミト

- Can write gravity as a gauge theory with spin connection as the gauge field
- Field strength $F_{\mu\nu}^{ab} = \partial_{\mu}A_{\nu}^{ab} \partial_{\nu}A_{\mu}^{ab} + A_{\mu}^{ac}A_{\nu}^{cb} A_{\nu}^{ac}A_{\mu}^{cb}$
- $Ricci scalar:$ $R(\Gamma) = F_{\mu\nu}^{ab} e^{\mu}_a e^{\nu}_b$

メロトメ 伊 トメ ミトメ ミト

- Can write gravity as a gauge theory with spin connection as the gauge field
- Field strength $F_{\mu\nu}^{ab} = \partial_{\mu}A_{\nu}^{ab} \partial_{\nu}A_{\mu}^{ab} + A_{\mu}^{ac}A_{\nu}^{cb} A_{\nu}^{ac}A_{\mu}^{cb}$
- $Ricci scalar:$ $R(\Gamma) = F_{\mu\nu}^{ab} e^{\mu}_a e^{\nu}_b$
- Action for gravity coupled to fermions:

$$
S = \int |e| d^4x \left[\frac{1}{2\kappa} F_{\mu\nu}^{ab} e^\mu_a e^\nu_b + \frac{i}{2} \left(\bar{\psi} \not{D} \psi - (\bar{\psi} \not{D} \psi)^\dagger \right) + i m \bar{\psi} \psi \right]
$$

- Can write gravity as a gauge theory with spin connection as the gauge field
- Field strength $F_{\mu\nu}^{ab} = \partial_{\mu}A_{\nu}^{ab} \partial_{\nu}A_{\mu}^{ab} + A_{\mu}^{ac}A_{\nu}^{cb} A_{\nu}^{ac}A_{\mu}^{cb}$
- $Ricci scalar:$ $R(\Gamma) = F_{\mu\nu}^{ab} e^{\mu}_a e^{\nu}_b$
- Action for gravity coupled to fermions:

$$
S = \int |e| d^4x \left[\frac{1}{2\kappa} F_{\mu\nu}^{ab} e^\mu_a e^\nu_b + \frac{i}{2} \left(\bar{\psi} \not{\!\! D} \psi - (\bar{\psi} \not{\!\! D} \psi)^{\dagger} \right) + i m \bar{\psi} \psi \right]
$$

metric signature $(- + + +)$ $\boxed{\gamma_0}$ is anti-Hermitian $\boxed{\ }$

メロトメ 伊 トメ ミトメ ミト

- Can write gravity as a gauge theory with spin connection as the gauge field
- Field strength $F_{\mu\nu}^{ab} = \partial_{\mu}A_{\nu}^{ab} \partial_{\nu}A_{\mu}^{ab} + A_{\mu}^{ac}A_{\nu}^{cb} A_{\nu}^{ac}A_{\mu}^{cb}$
- $Ricci scalar:$ $R(\Gamma) = F_{\mu\nu}^{ab} e^{\mu}_a e^{\nu}_b$
- Action for gravity coupled to fermions:

$$
S = \int |e| d^4x \left[\frac{1}{2\kappa} F_{\mu\nu}^{ab} e^\mu_a e^\nu_b + \frac{i}{2} \left(\bar{\psi} \not{D} \psi - (\bar{\psi} \not{D} \psi)^{\dagger} \right) + i m \bar{\psi} \psi \right]
$$

- metric signature $(- + + +)$ $\boxed{\gamma_0}$ is anti-Hermitian $\boxed{\ }$
- All fermions should be included (more about this later)

 Ω

- Can write gravity as a gauge theory with spin connection as the gauge field
- Field strength $F_{\mu\nu}^{ab} = \partial_{\mu}A_{\nu}^{ab} \partial_{\nu}A_{\mu}^{ab} + A_{\mu}^{ac}A_{\nu}^{cb} A_{\nu}^{ac}A_{\mu}^{cb}$
- $Ricci scalar:$ $R(\Gamma) = F_{\mu\nu}^{ab} e^{\mu}_a e^{\nu}_b$
- Action for gravity coupled to fermions:

$$
S = \int |e| d^4x \left[\frac{1}{2\kappa} F_{\mu\nu}^{ab} e^\mu_a e^\nu_b + \frac{i}{2} \left(\bar{\psi} \not{D} \psi - (\bar{\psi} \not{D} \psi)^{\dagger} \right) + i m \bar{\psi} \psi \right]
$$

- metric signature $(- + + +)$ $\boxed{\gamma_0}$ is anti-Hermitian $\boxed{\ }$
- All fermions should be included (more about this later)
- Work with one species for the moment

 Ω

• Gauge theory action
$$
S = \int |e| \, d^4x \, \left[\frac{1}{2\kappa} F_{\mu\nu}^{ab} e_a^\mu e_b^\nu + \mathcal{L}_\psi \right]
$$

 $\leftarrow \Box \rightarrow \neg \leftarrow \Box \Box \rightarrow \neg \leftarrow \Box \rightarrow \neg \left$

- Gauge theory action $S = \int |e| d^4x \left[\frac{1}{2} \right]$ $\frac{1}{2\kappa}F_{\mu\nu}^{ab}e^\mu_a e^\nu_b + \mathscr{L}_\psi\bigg]$
- $\mathscr{L}_\psi = \frac{i}{2}\left(\bar{\psi}\gamma^\mu\partial_\mu\psi \partial_\mu\bar{\psi}\gamma^\mu\psi \frac{i}{4}\mathsf{A}^{\mathsf{ab}}_\mu\bar{\psi}[\sigma_{\mathsf{a}\mathsf{b}},\gamma_\mathsf{C}]_+\psi\,\mathsf{e}^{\mu\mathsf{C}}\right) + \mathsf{im}\bar{\psi}\psi$

- Gauge theory action $S = \int |e| d^4x \left[\frac{1}{2} \right]$ $\frac{1}{2\kappa}F_{\mu\nu}^{ab}e^\mu_a e^\nu_b + \mathscr{L}_\psi\bigg]$
- $\mathscr{L}_\psi = \frac{i}{2}\left(\bar{\psi}\gamma^\mu\partial_\mu\psi \partial_\mu\bar{\psi}\gamma^\mu\psi \frac{i}{4}\mathsf{A}^{\mathsf{ab}}_\mu\bar{\psi}[\sigma_{\mathsf{a}\mathsf{b}},\gamma_\mathsf{C}]_+\psi\,\mathsf{e}^{\mu\mathsf{C}}\right) + \mathsf{im}\bar{\psi}\psi$
- \bullet A_μ and e_μ are independent fields in this framework

- Gauge theory action $S = \int |e| d^4x \left[\frac{1}{2} \right]$ $\frac{1}{2\kappa}F_{\mu\nu}^{ab}e^\mu_a e^\nu_b + \mathscr{L}_\psi\bigg]$
- $\mathscr{L}_\psi = \frac{i}{2}\left(\bar{\psi}\gamma^\mu\partial_\mu\psi \partial_\mu\bar{\psi}\gamma^\mu\psi \frac{i}{4}\mathsf{A}^{\mathsf{ab}}_\mu\bar{\psi}[\sigma_{\mathsf{a}\mathsf{b}},\gamma_\mathsf{C}]_+\psi\,\mathsf{e}^{\mu\mathsf{C}}\right) + \mathsf{im}\bar{\psi}\psi$
- \bullet A_μ and e_μ are independent fields in this framework
- δA_ν^{ab} : $A_\mu^{ab} = \omega_\mu^{ab} [\mathbf{e}] + \frac{\kappa}{8} \mathbf{e}_\mu^c \bar{\psi} [\gamma_c, \sigma^{ab}]_+ \psi$ \bullet

- Gauge theory action $S = \int |e| d^4x \left[\frac{1}{2} \right]$ $\frac{1}{2\kappa}F_{\mu\nu}^{ab}e^\mu_a e^\nu_b + \mathscr{L}_\psi\bigg]$
- $\mathscr{L}_\psi = \frac{i}{2}\left(\bar{\psi}\gamma^\mu\partial_\mu\psi \partial_\mu\bar{\psi}\gamma^\mu\psi \frac{i}{4}\mathsf{A}^{\mathsf{ab}}_\mu\bar{\psi}[\sigma_{\mathsf{a}\mathsf{b}},\gamma_\mathsf{C}]_+\psi\,\mathsf{e}^{\mu\mathsf{C}}\right) + \mathsf{im}\bar{\psi}\psi$
- \bullet A_μ and e_μ are independent fields in this framework
- δA_ν^{ab} : $A_\mu^{ab} = \omega_\mu^{ab} [\mathbf{e}] + \frac{\kappa}{8} \mathbf{e}_\mu^c \bar{\psi} [\gamma_c, \sigma^{ab}]_+ \psi$
	- $\omega_\mu^{ab}[e]$ corresponds to the torsion-free Levi-Civita connection

- Gauge theory action $S = \int |e| d^4x \left[\frac{1}{2} \right]$ $\frac{1}{2\kappa}F_{\mu\nu}^{ab}e^\mu_a e^\nu_b + \mathscr{L}_\psi\bigg]$
- $\mathscr{L}_\psi = \frac{i}{2}\left(\bar{\psi}\gamma^\mu\partial_\mu\psi \partial_\mu\bar{\psi}\gamma^\mu\psi \frac{i}{4}\mathsf{A}^{\mathsf{ab}}_\mu\bar{\psi}[\sigma_{\mathsf{a}\mathsf{b}},\gamma_\mathsf{C}]_+\psi\,\mathsf{e}^{\mu\mathsf{C}}\right) + \mathsf{im}\bar{\psi}\psi$
- \bullet A_μ and e_μ are independent fields in this framework
- δA_ν^{ab} : $A_\mu^{ab} = \omega_\mu^{ab} [\mathbf{e}] + \frac{\kappa}{8} \mathbf{e}_\mu^c \bar{\psi} [\gamma_c, \sigma^{ab}]_+ \psi$
	- $\omega_\mu^{ab}[e]$ corresponds to the torsion-free Levi-Civita connection
	- Christoffel symbols $\Gamma^{\sigma}_{\mu\nu} = e^{\sigma}_a \partial_{\mu} e^a_{\nu} + e^{\sigma}_a e_{\nu b} \omega^{ab}_{\mu}$

- Gauge theory action $S = \int |e| d^4x \left[\frac{1}{2} \right]$ $\frac{1}{2\kappa}F_{\mu\nu}^{ab}e^\mu_a e^\nu_b + \mathscr{L}_\psi\bigg]$
- $\mathscr{L}_\psi = \frac{i}{2}\left(\bar{\psi}\gamma^\mu\partial_\mu\psi \partial_\mu\bar{\psi}\gamma^\mu\psi \frac{i}{4}\mathsf{A}^{\mathsf{ab}}_\mu\bar{\psi}[\sigma_{\mathsf{a}\mathsf{b}},\gamma_\mathsf{C}]_+\psi\,\mathsf{e}^{\mu\mathsf{C}}\right) + \mathsf{im}\bar{\psi}\psi$
- \bullet A_μ and e_μ are independent fields in this framework
- δA_ν^{ab} : $A_\mu^{ab} = \omega_\mu^{ab} [\mathbf{e}] + \frac{\kappa}{8} \mathbf{e}_\mu^c \bar{\psi} [\gamma_c, \sigma^{ab}]_+ \psi$
	- $\omega_\mu^{ab}[e]$ corresponds to the torsion-free Levi-Civita connection
	- Christoffel symbols $\Gamma^{\sigma}_{\mu\nu} = e^{\sigma}_a \partial_{\mu} e^a_{\nu} + e^{\sigma}_a e_{\nu b} \omega^{ab}_{\mu}$
	- The fermion bilinear is torsion

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

- Gauge theory action $S = \int |e| d^4x \left[\frac{1}{2} \right]$ $\frac{1}{2\kappa}F_{\mu\nu}^{ab}e^\mu_a e^\nu_b + \mathscr{L}_\psi\bigg]$
- $\mathscr{L}_\psi = \frac{i}{2}\left(\bar{\psi}\gamma^\mu\partial_\mu\psi \partial_\mu\bar{\psi}\gamma^\mu\psi \frac{i}{4}\mathsf{A}^{\mathsf{ab}}_\mu\bar{\psi}[\sigma_{\mathsf{a}\mathsf{b}},\gamma_\mathsf{C}]_+\psi\,\mathsf{e}^{\mu\mathsf{C}}\right) + \mathsf{im}\bar{\psi}\psi$
- \bullet A_{μ} and e_{μ} are independent fields in this framework
- δA_ν^{ab} : $A_\mu^{ab} = \omega_\mu^{ab} [\mathbf{e}] + \frac{\kappa}{8} \mathbf{e}_\mu^c \bar{\psi} [\gamma_c, \sigma^{ab}]_+ \psi$
	- $\omega_\mu^{ab}[e]$ corresponds to the torsion-free Levi-Civita connection
	- Christoffel symbols $\Gamma^{\sigma}_{\mu\nu} = e^{\sigma}_a \partial_{\mu} e^a_{\nu} + e^{\sigma}_a e_{\nu b} \omega^{ab}_{\mu}$
	- The fermion bilinear is torsion
	- Dynamically generated, completely antisymmetric (geodesic eq. unaffected)

Varying e^a_μ gives Einstein Eq. : $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \kappa T_{\mu\nu}(\psi, \bar{\psi})$

- Varying e^a_μ gives Einstein Eq. : $R_{\mu\nu} \frac{1}{2}g_{\mu\nu}R = \kappa T_{\mu\nu}(\psi, \bar{\psi})$
	- Insert A^{ab}_{μ} into this \Rightarrow $T_{\mu\nu}$ has terms quartic in the fermion

- Varying e^a_μ gives Einstein Eq. : $R_{\mu\nu} \frac{1}{2}g_{\mu\nu}R = \kappa T_{\mu\nu}(\psi, \bar{\psi})$
	- Insert A^{ab}_{μ} into this \Rightarrow $T_{\mu\nu}$ has terms quartic in the fermion
	- In terms of the torsion-free Levi-Civita connection,

 $\widehat{R}_{\mu\nu} - \frac{1}{2} g_{\mu\nu} \widehat{R} = \kappa \widehat{T}_{\mu\nu} (\psi, \bar{\psi}) - \frac{3 \kappa^2}{16} g_{\mu\nu} \bar{\psi} \gamma_{\textbf{a}} \gamma_5 \psi \bar{\psi} \gamma^{\textbf{a}} \gamma_5 \psi$

K ロ ⊁ K 倒 ≯ K 君 ⊁ K 君 ≯

- Varying e^a_μ gives Einstein Eq. : $R_{\mu\nu} \frac{1}{2}g_{\mu\nu}R = \kappa T_{\mu\nu}(\psi, \bar{\psi})$
	- Insert A^{ab}_{μ} into this \Rightarrow $T_{\mu\nu}$ has terms quartic in the fermion
	- In terms of the torsion-free Levi-Civita connection, $\widehat{R}_{\mu\nu} - \frac{1}{2} g_{\mu\nu} \widehat{R} = \kappa \widehat{T}_{\mu\nu} (\psi, \bar{\psi}) - \frac{3 \kappa^2}{16} g_{\mu\nu} \bar{\psi} \gamma_{\textbf{a}} \gamma_5 \psi \bar{\psi} \gamma^{\textbf{a}} \gamma_5 \psi$
	- Last term comes from using $\left[\gamma_c, \sigma_{ab} \right]_+ = 2 \epsilon_{abcd} \gamma^d \gamma^5$

- Varying e^a_μ gives Einstein Eq. : $R_{\mu\nu} \frac{1}{2}g_{\mu\nu}R = \kappa T_{\mu\nu}(\psi, \bar{\psi})$
	- Insert A^{ab}_{μ} into this \Rightarrow $T_{\mu\nu}$ has terms quartic in the fermion
	- In terms of the torsion-free Levi-Civita connection, $\widehat{R}_{\mu\nu} - \frac{1}{2} g_{\mu\nu} \widehat{R} = \kappa \widehat{T}_{\mu\nu} (\psi, \bar{\psi}) - \frac{3 \kappa^2}{16} g_{\mu\nu} \bar{\psi} \gamma_{\textbf{a}} \gamma_5 \psi \bar{\psi} \gamma^{\textbf{a}} \gamma_5 \psi$
	- Last term comes from using $\left[\gamma_c, \sigma_{ab} \right]_+ = 2 \epsilon_{abcd} \gamma^d \gamma^5$
- Dirac Eq.: $\phi \psi \frac{i}{4} \omega_{\mu}^{ab} \gamma_{\mu} \sigma_{ab} \psi + m \psi + \frac{3i \kappa}{8} (\bar{\psi} \gamma^a \gamma^5 \psi) \gamma_a \gamma^5 \psi = 0$

- Varying e^a_μ gives Einstein Eq. : $R_{\mu\nu} \frac{1}{2}g_{\mu\nu}R = \kappa T_{\mu\nu}(\psi, \bar{\psi})$
	- Insert A^{ab}_{μ} into this \Rightarrow $T_{\mu\nu}$ has terms quartic in the fermion
	- In terms of the torsion-free Levi-Civita connection, $\widehat{R}_{\mu\nu} - \frac{1}{2} g_{\mu\nu} \widehat{R} = \kappa \widehat{T}_{\mu\nu} (\psi, \bar{\psi}) - \frac{3 \kappa^2}{16} g_{\mu\nu} \bar{\psi} \gamma_{\textbf{a}} \gamma_5 \psi \bar{\psi} \gamma^{\textbf{a}} \gamma_5 \psi$
	- Last term comes from using $\left[\gamma_c, \sigma_{ab} \right]_+ = 2 \epsilon_{abcd} \gamma^d \gamma^5$
- Dirac Eq.: $\phi \psi \frac{i}{4} \omega_{\mu}^{ab} \gamma_{\mu} \sigma_{ab} \psi + m \psi + \frac{3i \kappa}{8} (\bar{\psi} \gamma^a \gamma^5 \psi) \gamma_a \gamma^5 \psi = 0$
- Dirac Eq. in curved spacetime is naturally nonlinear (old stuff)

K ロ ⊁ K 伊 ⊁ K ミ ⊁ K ミ ⊁

All fermions must appear in the action

All fermions must appear in the action

$$
\Phi = \mathscr{L}_{\psi} \to \frac{i}{2} \sum_{f} \left(\bar{f} \gamma^{\mu} \partial_{\mu} f - \partial_{\mu} \bar{f} \gamma^{\mu} f - \frac{i}{4} A_{\mu}^{ab} \bar{f} [\sigma_{ab}, \gamma_c]_{+} f e^{\mu c} + 2m \bar{f} f \right)
$$

• All fermions must appear in the action

$$
\Phi = \mathscr{L}_{\psi} \to \frac{i}{2} \sum_{f} \left(\bar{f} \gamma^{\mu} \partial_{\mu} f - \partial_{\mu} \bar{f} \gamma^{\mu} f - \frac{i}{4} A_{\mu}^{ab} \bar{f} [\sigma_{ab}, \gamma_c]_{+} f e^{\mu c} + 2m \bar{f} f \right)
$$

• The sum is over all species of fermions in the universe

◆ロト→母ト

(国家 すっ) →

 \rightarrow

- All fermions must appear in the action
- $\mathscr{L}_{\psi} \rightarrow \frac{i}{2} \sum_{f}$ $\left(\bar{f}\gamma^{\mu}\partial_{\mu}f - \partial_{\mu}\bar{f}\gamma^{\mu}f - \frac{i}{4}A^{ab}_{\mu}\bar{f}[\sigma_{ab},\gamma_{c}]_{+}f e^{\mu c} + 2m\bar{f}f\right)$
- The sum is over all species of fermions in the universe \bullet
- Then $A^{ab}_{\mu} = \omega^{ab}_{\mu} [e] + \frac{\kappa}{8} e^{c}_{\mu} \sum_{f} \bar{f} [\gamma_c, \sigma^{ab}]_{+} i$

- All fermions must appear in the action
- $\mathscr{L}_{\psi} \rightarrow \frac{i}{2} \sum_{f}$ $\left(\bar{f}\gamma^{\mu}\partial_{\mu}f - \partial_{\mu}\bar{f}\gamma^{\mu}f - \frac{i}{4}A^{ab}_{\mu}\bar{f}[\sigma_{ab},\gamma_{c}]_{+}f e^{\mu c} + 2m\bar{f}f\right)$
- The sum is over all species of fermions in the universe \bullet
- Then $A^{ab}_{\mu} = \omega^{ab}_{\mu} [e] + \frac{\kappa}{8} e^{c}_{\mu} \sum_{f} \bar{f} [\gamma_c, \sigma^{ab}]_{+} i$
- Dirac Eq. is modified in the same way, for every type of fermion

- All fermions must appear in the action
- $\mathscr{L}_{\psi} \rightarrow \frac{i}{2} \sum_{f}$ $\left(\bar{f}\gamma^{\mu}\partial_{\mu}f - \partial_{\mu}\bar{f}\gamma^{\mu}f - \frac{i}{4}A^{ab}_{\mu}\bar{f}[\sigma_{ab},\gamma_{c}]_{+}f e^{\mu c} + 2m\bar{f}f\right)$
- The sum is over all species of fermions in the universe \bullet
- Then $A^{ab}_{\mu} = \omega^{ab}_{\mu}[e] + \frac{\kappa}{8} e^{c}_{\mu} \sum_{l} \bar{f} [\gamma_c, \sigma^{ab}]_{+}$ *i f*
- Dirac Eq. is modified in the same way, for every type of fermion
- $\partial \phi \frac{i}{4} \omega_{\mu}^{ab} \gamma^{\mu} \sigma_{ab} \psi + m \psi + \frac{3i \kappa}{8} (\sum_{f} \bar{f} \gamma^{a} \gamma^{5} f) \gamma_{a} \gamma^{5} \psi = 0$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶
Many fermions

- All fermions must appear in the action
- $\mathscr{L}_{\psi} \rightarrow \frac{i}{2} \sum_{f}$ $\left(\bar{f}\gamma^{\mu}\partial_{\mu}f - \partial_{\mu}\bar{f}\gamma^{\mu}f - \frac{i}{4}A^{ab}_{\mu}\bar{f}[\sigma_{ab},\gamma_{c}]_{+}f e^{\mu c} + 2m\bar{f}f\right)$
- The sum is over all species of fermions in the universe \bullet
- Then $A^{ab}_{\mu} = \omega^{ab}_{\mu}[e] + \frac{\kappa}{8} e^{c}_{\mu} \sum_{l} \bar{f} [\gamma_c, \sigma^{ab}]_{+}$ *i f*
- Dirac Eq. is modified in the same way, for every type of fermion
- $\partial \phi \frac{i}{4} \omega_{\mu}^{ab} \gamma^{\mu} \sigma_{ab} \psi + m \psi + \frac{3i \kappa}{8} (\sum_{f} \bar{f} \gamma^{a} \gamma^{5} f) \gamma_{a} \gamma^{5} \psi = 0$
- Term in brackets can be approximated by background average (for $f \neq \psi$) ۰

メロメメ 御きメ ミトメ きょ

Many fermions

- All fermions must appear in the action
- $\mathscr{L}_{\psi} \rightarrow \frac{i}{2} \sum_{f}$ $\left(\bar{f}\gamma^{\mu}\partial_{\mu}f - \partial_{\mu}\bar{f}\gamma^{\mu}f - \frac{i}{4}A^{ab}_{\mu}\bar{f}[\sigma_{ab},\gamma_{c}]_{+}f e^{\mu c} + 2m\bar{f}f\right)$
- The sum is over all species of fermions in the universe \bullet
- Then $A^{ab}_{\mu} = \omega^{ab}_{\mu}[e] + \frac{\kappa}{8} e^{c}_{\mu} \sum_{l} \bar{f} [\gamma_c, \sigma^{ab}]_{+}$ *i f*
- Dirac Eq. is modified in the same way, for every type of fermion
- $\partial \phi \frac{i}{4} \omega_{\mu}^{ab} \gamma^{\mu} \sigma_{ab} \psi + m \psi + \frac{3i \kappa}{8} (\sum_{f} \bar{f} \gamma^{a} \gamma^{5} f) \gamma_{a} \gamma^{5} \psi = 0$
- Term in brackets can be approximated by background average (for $f \neq \psi$) ۰
- But $\langle \sum \overline{f} \gamma^a \gamma^5 f \rangle$ is spin density \sim 0 for generic matter distribution *f*

メロメメ 倒 メメ ミメメ ミメ

 \mathfrak{G}

 200

Many fermions

- All fermions must appear in the action
- $\mathscr{L}_{\psi} \rightarrow \frac{i}{2} \sum_{f}$ $\left(\bar{f}\gamma^{\mu}\partial_{\mu}f - \partial_{\mu}\bar{f}\gamma^{\mu}f - \frac{i}{4}A^{ab}_{\mu}\bar{f}[\sigma_{ab},\gamma_{c}]_{+}f e^{\mu c} + 2m\bar{f}f\right)$
- The sum is over all species of fermions in the universe \bullet
- Then $A^{ab}_{\mu} = \omega^{ab}_{\mu}[e] + \frac{\kappa}{8} e^{c}_{\mu} \sum_{i} \overline{f} [\gamma_c, \sigma^{ab}]_{+}$ *i f*
- Dirac Eq. is modified in the same way, for every type of fermion
- $\partial \phi \frac{i}{4} \omega_{\mu}^{ab} \gamma^{\mu} \sigma_{ab} \psi + m \psi + \frac{3i \kappa}{8} (\sum_{f} \bar{f} \gamma^{a} \gamma^{5} f) \gamma_{a} \gamma^{5} \psi = 0$
- **•** Term in brackets can be approximated by background average (for $f \neq \psi$)
- But $\langle \sum_{f} \bar{f} \gamma^a \gamma^5 f \rangle$ is spin density ∼ 0 for generic matter distribution
- However, something else should be taken into account

イロン イ母ン イヨン イヨン

 \mathfrak{G}

 200

Chiral Torsion

First go back and write $A_{\mu}^{ab} = \omega_{\mu}^{ab}(e) + \Lambda_{\mu}^{ab}$ (contorsion)

 $\leftarrow \Box \rightarrow \neg \leftarrow \Box \Box \rightarrow \neg \leftarrow \Box \rightarrow \neg \left$

Chiral Torsion

- First go back and write $A_{\mu}^{ab} = \omega_{\mu}^{ab}(e) + \Lambda_{\mu}^{ab}$ (contorsion)
- Then the field strength is $F_{\mu\nu}^{ab}(A) = F_{\mu\nu}^{ab}(\omega) + (D_{[\mu}^{\omega}\Lambda_{\nu]})^{ab} + \eta_{cd}\Lambda_{[\mu}^{ac}\Lambda_{\nu]}^{db}$

メロメメ 御きメ ミトメ きょ

Chiral Torsion

- First go back and write $A_{\mu}^{ab} = \omega_{\mu}^{ab}(e) + \Lambda_{\mu}^{ab}$ (contorsion)
- Then the field strength is $F_{\mu\nu}^{ab}(A) = F_{\mu\nu}^{ab}(\omega) + (D_{[\mu}^{\omega}\Lambda_{\nu]})^{ab} + \eta_{cd}\Lambda_{[\mu}^{ac}\Lambda_{\nu]}^{db}$
- *Λ* **appears in action as** $\frac{1}{2\kappa}\eta_{cd}e^{\mu}_{a}e^{\nu}_{b}\Lambda^{ac}_{[\mu}\Lambda^{db}_{\nu]} + \frac{1}{8}\sum_{f}e^{\mu}_{c}\Lambda^{ab}_{\mu}\bar{\psi}_{f}[\gamma^{c}, \sigma_{ab}]_{+}\psi_{f}$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Chiral Torsion

- First go back and write $A_{\mu}^{ab} = \omega_{\mu}^{ab}(e) + \Lambda_{\mu}^{ab}$ (contorsion)
- Then the field strength is $F_{\mu\nu}^{ab}(A) = F_{\mu\nu}^{ab}(\omega) + (D_{[\mu}^{\omega}\Lambda_{\nu]})^{ab} + \eta_{cd}\Lambda_{[\mu}^{ac}\Lambda_{\nu]}^{db}$
- *Λ* **appears in action as** $\frac{1}{2\kappa}\eta_{cd}e^{\mu}_{a}e^{\nu}_{b}\Lambda^{ac}_{[\mu}\Lambda^{db}_{\nu]} + \frac{1}{8}\sum_{f}e^{\mu}_{c}\Lambda^{ab}_{\mu}\bar{\psi}_{f}[\gamma^{c}, \sigma_{ab}]_{+}\psi_{f}$
- Purely algebraic eq. for Λ (non-propagating auxiliary field)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Chiral Torsion

- First go back and write $A_{\mu}^{ab} = \omega_{\mu}^{ab}(e) + \Lambda_{\mu}^{ab}$ (contorsion)
- Then the field strength is $F_{\mu\nu}^{ab}(A) = F_{\mu\nu}^{ab}(\omega) + (D_{[\mu}^{\omega}\Lambda_{\nu]})^{ab} + \eta_{cd}\Lambda_{[\mu}^{ac}\Lambda_{\nu]}^{db}$
- *Λ* **appears in action as** $\frac{1}{2\kappa}\eta_{cd}e^{\mu}_{a}e^{\nu}_{b}\Lambda^{ac}_{[\mu}\Lambda^{db}_{\nu]} + \frac{1}{8}\sum_{f}e^{\mu}_{c}\Lambda^{ab}_{\mu}\bar{\psi}_{f}[\gamma^{c}, \sigma_{ab}]_{+}\psi_{f}$
- Purely algebraic eq. for Λ (non-propagating auxiliary field)
- Solution is $\Lambda_\mu^{ab}=\frac{\kappa}{8}e_\mu^c\ \bar{\psi}\left[\gamma_c,\sigma^{ab}\right]_+\psi$, which can be put back in the action

イロト イ団 トメ ミトメ ミト

 \mathfrak{G}

 QQ

Chiral Torsion

- First go back and write $A_{\mu}^{ab} = \omega_{\mu}^{ab}(e) + \Lambda_{\mu}^{ab}$ (contorsion)
- Then the field strength is $F_{\mu\nu}^{ab}(A) = F_{\mu\nu}^{ab}(\omega) + (D_{[\mu}^{\omega}\Lambda_{\nu]})^{ab} + \eta_{cd}\Lambda_{[\mu}^{ac}\Lambda_{\nu]}^{db}$
- *Λ* **appears in action as** $\frac{1}{2\kappa}\eta_{cd}e^{\mu}_{a}e^{\nu}_{b}\Lambda^{ac}_{[\mu}\Lambda^{db}_{\nu]} + \frac{1}{8}\sum_{f}e^{\mu}_{c}\Lambda^{ab}_{\mu}\bar{\psi}_{f}[\gamma^{c}, \sigma_{ab}]_{+}\psi_{f}$
- Purely algebraic eq. for Λ (non-propagating auxiliary field)
- Solution is $\Lambda_\mu^{ab}=\frac{\kappa}{8}e_\mu^c\ \bar{\psi}\left[\gamma_c,\sigma^{ab}\right]_+\psi$, which can be put back in the action
- Equivalent to starting with torsion free connection and a four-fermion interaction term

(ロ) (個) (差) (差)

 \circledB

 Ω

Chiral Torsion

- First go back and write $A_{\mu}^{ab} = \omega_{\mu}^{ab}(e) + \Lambda_{\mu}^{ab}$ (contorsion)
- Then the field strength is $F_{\mu\nu}^{ab}(A) = F_{\mu\nu}^{ab}(\omega) + (D_{[\mu}^{\omega}\Lambda_{\nu]})^{ab} + \eta_{cd}\Lambda_{[\mu}^{ac}\Lambda_{\nu]}^{db}$
- *Λ* **appears in action as** $\frac{1}{2\kappa}\eta_{cd}e^{\mu}_{a}e^{\nu}_{b}\Lambda^{ac}_{[\mu}\Lambda^{db}_{\nu]} + \frac{1}{8}\sum_{f}e^{\mu}_{c}\Lambda^{ab}_{\mu}\bar{\psi}_{f}[\gamma^{c}, \sigma_{ab}]_{+}\psi_{f}$
- Purely algebraic eq. for Λ (non-propagating auxiliary field)
- Solution is $\Lambda_\mu^{ab}=\frac{\kappa}{8}e_\mu^c\ \bar{\psi}\left[\gamma_c,\sigma^{ab}\right]_+\psi$, which can be put back in the action
- Equivalent to starting with torsion free connection and a four-fermion interaction term
- All the equations are exactly the same as before; so what did we gain? \bullet

イロト イ団 トメ ミトメ ミト

 \mathfrak{G}

 Ω

(Con)torsion couples to fermions as a vector field independently of gravity

K ロ ⊁ K 伊 ⊁ K ミ ⊁ K ミ ⊁

- (Con)torsion couples to fermions as a vector field independently of gravity
- Terms containing Λ are invariant on their own

- (Con)torsion couples to fermions as a vector field independently of gravity
- Terms containing Λ are invariant on their own
- No reason to assume Λ couples identically to all fermions

- (Con)torsion couples to fermions as a vector field independently of gravity
- Terms containing Λ are invariant on their own
- No reason to assume Λ couples identically to all fermions
- Or to left- and right-handed fermions

K ロ ⊁ K 倒 ≯ K 君 ⊁ K 君 ≯

- (Con)torsion couples to fermions as a vector field independently of gravity
- Terms containing Λ are invariant on their own
- No reason to assume Λ couples identically to all fermions
- Or to left- and right-handed fermions
- Generic fermion-contorsion coupling:

 $\frac{1}{8} \sum_{f} \Lambda_{\mu}^{ab} e_{c}^{\mu} \left(\lambda_{\ell L} \overline{t}_{L} \left[\gamma^{c}, \sigma_{ab} \right]_{+} \overline{t}_{L} + \lambda_{\ell R} \overline{t}_{R} \left[\gamma^{c}, \sigma_{ab} \right]_{+} \overline{t}_{R} \right)$

- (Con)torsion couples to fermions as a vector field independently of gravity ۰
- \bullet Terms containing Λ are invariant on their own
- No reason to assume Λ couples identically to all fermions
- Or to left- and right-handed fermions
- Generic fermion-contorsion coupling:

 $\frac{1}{8} \sum_{f} \Lambda_{\mu}^{ab} e_{c}^{\mu} \left(\lambda_{\ell L} \overline{t}_{L} \left[\gamma^{c}, \sigma_{ab} \right]_{+} \overline{t}_{L} + \lambda_{\ell R} \overline{t}_{R} \left[\gamma^{c}, \sigma_{ab} \right]_{+} \overline{t}_{R} \right)$

Torsion is totally antisymmetric ∼ *abcd* P *f* $(\lambda_{\text{fL}}\overline{f}_{\text{L}}\gamma^{\text{d}}\gamma^5f_{\text{L}} + \lambda_{\text{fR}}\overline{f}_{\text{R}}\gamma^{\text{d}}\gamma^5f_{\text{R}})$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

- (Con)torsion couples to fermions as a vector field independently of gravity ۰
- Terms containing Λ are invariant on their own
- No reason to assume Λ couples identically to all fermions
- Or to left- and right-handed fermions
- Generic fermion-contorsion coupling:

 $\frac{1}{8} \sum_{f} \Lambda_{\mu}^{ab} e_{c}^{\mu} \left(\lambda_{\ell L} \overline{t}_{L} \left[\gamma^{c}, \sigma_{ab} \right]_{+} \overline{t}_{L} + \lambda_{\ell R} \overline{t}_{R} \left[\gamma^{c}, \sigma_{ab} \right]_{+} \overline{t}_{R} \right)$

- Torsion is totally antisymmetric ∼ *abcd* P *f* $(\lambda_{\text{fL}}\overline{f}_{\text{L}}\gamma^{\text{d}}\gamma^5f_{\text{L}} + \lambda_{\text{fR}}\overline{f}_{\text{R}}\gamma^{\text{d}}\gamma^5f_{\text{R}})$
- So geodesic equation is unaffected all particles fall at the same rate

K ロ ト K 個 ト K 差 ト K 差 ト

Applications

• Effective four-fermion interaction

 $-\frac{1}{8}$ $\left(\sum_{f}$ $\left(\lambda_{\text{fL}}\overline{f}_{\text{L}}\gamma_{\text{a}}\gamma^{5}f + \lambda_{\text{fR}}\overline{f}_{\text{R}}\gamma_{\text{a}}\gamma^{5}f_{\text{R}}\right)\right)^{2}$

メロメメ 御きメ ミトメ きょ

Applications

• Effective four-fermion interaction

$$
-\frac{1}{8}\left(\sum\limits_{f}\left(\lambda_{fL}\overline{\dot{f}}_{L}\gamma_{d}\gamma^{5}f+\lambda_{fR}\overline{\dot{f}}_{R}\gamma_{d}\gamma^{5}f_{R}\right)\right)^{2}
$$

This term must always be present, and include all fermions

Applications

• Effective four-fermion interaction

$$
-\frac{1}{8}\left(\sum\limits_{f}\left(\lambda_{fL}\overline{\dot{f}}_{L}\gamma_{d}\gamma^{5}f+\lambda_{fR}\overline{\dot{f}}_{R}\gamma_{d}\gamma^{5}f_{R}\right)\right)^{2}
$$

- This term must always be present, and include all fermions
- Unless λ_{fL} , λ_{fR} are set to zero by hand

Applications

• Effective four-fermion interaction

$$
-\frac{1}{8}\left(\sum\limits_{f}\left(\lambda_{fL}\overline{f}_{L}\gamma_{d}\gamma^{5}f+\lambda_{fR}\overline{f}_{R}\gamma_{d}\gamma^{5}f_{R}\right)\right)^{2}
$$

- This term must always be present, and include all fermions
- Unless $\lambda_{\rm fl}$, $\lambda_{\rm fR}$ are set to zero by hand
- Affects dispersion relations: e.g. neutrinos in matter

Applications

• Effective four-fermion interaction

$$
-\frac{1}{8}\left(\sum_{f} \left(\lambda_{fL}\overline{f}_{L}\gamma_{a}\gamma^{5}f + \lambda_{fR}\overline{f}_{R}\gamma_{a}\gamma^{5}f_{R}\right)\right)^{2}
$$

- This term must always be present, and include all fermions
- Unless $\lambda_{\rm fl}$, $\lambda_{\rm fR}$ are set to zero by hand
- Affects dispersion relations: e.g. neutrinos in matter
- Assume only left-handed neutrinos, then forward scattering amplitude in normal matter

$$
\mathcal{M} = -(\bar{\nu}_{\alpha} \gamma_{a} \nu_{\alpha}) \lambda_{\nu_{\alpha}} \left\langle \sum_{\theta, \rho, n} \left(\lambda_{fV} \bar{\psi}_{f} \gamma^{a} \psi_{f} - \lambda_{fA} \bar{\psi}_{f} \gamma^{a} \gamma^{5} \psi_{f} \right) \right\rangle
$$

$$
\begin{array}{c}\n\circ \\
\circ \\
\circ \\
\circ\n\end{array}
$$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

Applications

• Effective four-fermion interaction

$$
-\frac{1}{8} \left(\sum_f \left(\lambda_{fL} \overline{f}_L \gamma_a \gamma^5 f + \lambda_{fR} \overline{f}_R \gamma_a \gamma^5 f_R \right) \right)^2
$$

- This term must always be present, and include all fermions
- Unless $\lambda_{\rm fl}$, $\lambda_{\rm fR}$ are set to zero by hand
- Affects dispersion relations: e.g. neutrinos in matter
- Assume only left-handed neutrinos, then forward scattering amplitude in normal matter

$$
\mathcal{M} = -(\bar{\nu}_{\alpha} \gamma_{a} \nu_{\alpha}) \lambda_{\nu_{\alpha}} \left\langle \sum_{e,\rho,n} \left(\lambda_{fV} \bar{\psi}_{f} \gamma^{a} \psi_{f} - \lambda_{fA} \bar{\psi}_{f} \gamma^{a} \gamma^{5} \psi_{f} \right) \right\rangle
$$

• Second term vanishes in typical matter distributions (axial charge and spin density)

 Ω

K ロ ⊁ K 倒 ≯ K 走 ⊁ K 走 ≯

Applications

• Effective four-fermion interaction

$$
-\frac{1}{8} \left(\sum_f \left(\lambda_{fL} \overline{f}_L \gamma_a \gamma^5 f + \lambda_{fR} \overline{f}_R \gamma_a \gamma^5 f_R \right) \right)^2
$$

- This term must always be present, and include all fermions
- Unless $\lambda_{\rm fl}$, $\lambda_{\rm fR}$ are set to zero by hand
- Affects dispersion relations: e.g. neutrinos in matter
- Assume only left-handed neutrinos, then forward scattering amplitude in normal matter

$$
\mathcal{M} = -(\bar{\nu}_{\alpha} \gamma_{\mathbf{a}} \nu_{\alpha}) \lambda_{\nu_{\alpha}} \left\langle \sum_{\mathbf{e}, \mathbf{p}, n} \left(\lambda_{\mathbf{f} \mathbf{V}} \bar{\psi}_{\mathbf{f}} \gamma^{\mathbf{a}} \psi_{\mathbf{f}} - \lambda_{\mathbf{f} \mathbf{A}} \bar{\psi}_{\mathbf{f}} \gamma^{\mathbf{a}} \gamma^{\mathbf{5}} \psi_{\mathbf{f}} \right) \right\rangle
$$

• Second term vanishes in typical matter distributions (axial charge and spin density)

• First term averages to density,
$$
\delta \mathscr{H}_{\textrm{eff}} = \left(\sum_{e,\rho,\bar{n}} \lambda_f n_f\right) \lambda_{\nu_\alpha} \nu_\alpha^\dagger \nu_\alpha
$$

K ロ ⊁ K 倒 ≯ K 走 ⊁ K 走 ≯

Applications

• Effective four-fermion interaction

$$
-\frac{1}{8} \left(\sum_f \left(\lambda_{fL} \overline{f}_L \gamma_a \gamma^5 f + \lambda_{fR} \overline{f}_R \gamma_a \gamma^5 f_R \right) \right)^2
$$

- This term must always be present, and include all fermions
- Unless $\lambda_{\rm fl}$, $\lambda_{\rm fR}$ are set to zero by hand
- Affects dispersion relations: e.g. neutrinos in matter
- Assume only left-handed neutrinos, then forward scattering amplitude in normal matter

$$
\mathcal{M} = -(\bar{\nu}_{\alpha} \gamma_{\mathbf{a}} \nu_{\alpha}) \lambda_{\nu_{\alpha}} \left\langle \sum_{\mathbf{e}, \mathbf{p}, n} \left(\lambda_{\mathbf{f} \mathbf{V}} \bar{\psi}_{\mathbf{f}} \gamma^{\mathbf{a}} \psi_{\mathbf{f}} - \lambda_{\mathbf{f} \mathbf{A}} \bar{\psi}_{\mathbf{f}} \gamma^{\mathbf{a}} \gamma^{\mathbf{5}} \psi_{\mathbf{f}} \right) \right\rangle
$$

• Second term vanishes in typical matter distributions (axial charge and spin density)

• First term averages to density,
$$
\delta \mathscr{H}_{\mathrm{eff}} = \left(\sum_{e,\rho,n} \lambda_f n_f\right) \lambda_{\nu_\alpha} \nu^\dagger_\alpha \nu_\alpha
$$

e Contributes to neutrino oscillations

K ロ ト K 何 ト

医单侧 医单位

 Ω

Treat as four-fermion interaction in flat space

(ロ) (d)

医电影医电影

- Treat as four-fermion interaction in flat space
- Contribution to inertia and dispersion relations in matter

K ロ ト K 何 ト

경기 지금이

- Treat as four-fermion interaction in flat space
- Contribution to inertia and dispersion relations in matter
- Neutrino oscillations, stellar models, early universe

◆ ロ ▶ → 何

- Treat as four-fermion interaction in flat space
- Contribution to inertia and dispersion relations in matter
- Neutrino oscillations, stellar models, early universe
- Mass of dense stars may be different from calculated (models of dark matter?)

◆ ロ ▶ → 何

ヨメ イヨメ

- Treat as four-fermion interaction in flat space
- Contribution to inertia and dispersion relations in matter
- Neutrino oscillations, stellar models, early universe
- Mass of dense stars may be different from calculated (models of dark matter?)
- **•** Parity violation

◆ ロ ▶ → 何

ヨメ イヨメ

- Treat as four-fermion interaction in flat space
- Contribution to inertia and dispersion relations in matter
- Neutrino oscillations, stellar models, early universe
- Mass of dense stars may be different from calculated (models of dark matter?)
- Parity violation
- Renormalization issues linked to QG

◆ ロ ▶ → 何

ヨメ イヨメ

- Treat as four-fermion interaction in flat space
- \bullet Contribution to inertia and dispersion relations in matter
- Neutrino oscillations, stellar models, early universe
- Mass of dense stars may be different from calculated (models of dark matter?)
- Parity violation
- Renormalization issues linked to QG
- Main issue: How small is this interaction?

4 ロト 4 旬

경 시계 경기

- Treat as four-fermion interaction in flat space
- \bullet Contribution to inertia and dispersion relations in matter
- Neutrino oscillations, stellar models, early universe
- Mass of dense stars may be different from calculated (models of dark matter?)
- Parity violation
- Renormalization issues linked to QG
- Main issue: How small is this interaction?
- How large does it need to be? (Ans. Not very.)

4 ロト 4 旬

- Treat as four-fermion interaction in flat space
- \bullet Contribution to inertia and dispersion relations in matter
- Neutrino oscillations, stellar models, early universe
- Mass of dense stars may be different from calculated (models of dark matter?)
- Parity violation
- Renormalization issues linked to QG
- Main issue: How small is this interaction?
- How large does it need to be? (Ans. Not very.)
- λ*^f* couplings do not come from a quantum theory, unlike *G^F*

4 ロト 4 旬

- Treat as four-fermion interaction in flat space
- Contribution to inertia and dispersion relations in matter
- Neutrino oscillations, stellar models, early universe
- Mass of dense stars may be different from calculated (models of dark matter?)
- Parity violation
- **Renormalization issues linked to OG**
- Main issue: How small is this interaction?
- How large does it need to be? (Ans. Not very.)
- λ*^f* couplings do not come from a quantum theory, unlike *G^F*
- Can be set only by comparison with experimental data

Work done with S. Chakrabarty: 1907.02341, 1904.06036 Also I. Ghose, R. Barik, A. Chakraborty (In preparation)

Thank You

A. Lahiri (SNBose) [Chiral Torsion](#page-0-0) Chiral Torsion SNBNCBS 11/11

←ロト ←何ト

一(話) Ξ. \rightarrow