Chapter 1

Topology

We start by defining a topological space.

• A topological space is a set S together with a collection \mathcal{O} of subsets called **open sets** such that the following are true:

- i) the empty set \emptyset and S are open, $\emptyset, S \in \mathscr{O}$
- ii) the intersection of a *finite* number of open sets is open; if $U_1, U_2 \in \mathcal{O}$, then $U_1 \cap U_2 \in \mathcal{O}$
- *iii*) the union of any number of open sets is open, if $U_i \in \mathcal{O}$, then $\bigcup U_i \in \mathcal{O}$ irrespective of the range of *i*.

It is the pair $\{S, \mathcal{O}\}$ which is, precisely speaking, a topological space, or a **space with topology**. But it is common to refer to S as a topological space which has been given a **topology** by specifying \mathcal{O} .

Example: $S = \mathbb{R}$, the real line, with the open sets being open intervals]a, b[, i.e. the sets $\{x \in \mathbb{R} \mid a < x < b\}$ and their unions, plus \emptyset and \mathbb{R} itself. Then (i) above is true by definition.

For two such open sets $U_1 =]a_1, b_1[$ and $U_2 =]a_2, b_2[$, we can suppose $a_1 < a_2$. Then if $b_1 \leq a_2$, the intersection $U_1 \cap U_2 = \emptyset \in \mathcal{O}$. Otherwise $U_1 \cap U_2 =]a_2, b_1[$ which is an open interval and thus $U_1 \cap U_2 \in \mathcal{O}$. So (ii) is true.

And (iii) is also true by definition.

Similarly \mathbb{R}^n can be given a topology via open rectangles, i.e. via the sets $\{(x_1, \dots, x_n) \in \mathbb{R}^n | a_i < x_i < b_i\}$. This is called the **standard** or usual topology of \mathbb{R}^n .

The trivial topology on S consists of $\mathcal{O} = \{\emptyset, S\}$.

• The **discrete** topology on a set S is defined by $\mathcal{O} = \{A \mid A \subset S\}$, i.e., \mathcal{O} consists of all subsets of S.

• A set A is closed if its complement in S, also written $S \setminus A$ or as A^{\complement} , is open.

Closed rectangles in \mathbb{R}^n are closed sets as are closed balls and single point sets.

A set can be neither open nor closed, or both open and closed. In a discrete topology, every set $A \subset S$ is both open and closed, whereas in a trivial topology, any set $A \neq \emptyset$ or S is neither open nor closed.

The collection \mathscr{C} of closed sets in a topological space \mathcal{S} satisfy the following:

- i) the empty set \emptyset and S are closed, $\emptyset, S \in \mathscr{C}$
- *ii*) the union of a *finite* number of closed sets is closed; if $A_1, A_2 \in \mathscr{C}$, then $A_1 \cup A_2 \in \mathscr{C}$
- *iii*) the intersection of any number of closed sets is closed, if $A_i \in \mathscr{C}$, then $\bigcap A_i \in \mathscr{C}$ irrespective of the range of *i*.

Closed sets can also be used to define a topology. Given a set S with a collection C of subsets satisfying the above three properties of closed sets, we can always define a topology, since the complements of closed sets are open. (Exercise!)

• An **open neighbourhood** of a point P in a topological space S is an open set containing P. A **neighbourhood** of P is a set containing an open neighbourhood of P. Neighbourhoods can be defined for sets as well in a similar fashion.

Examples: For a point $x \in \mathbb{R}$, and for any $\epsilon > 0$,

 $]x - \epsilon, x + \epsilon[$ is an open neighbourhood of x,

 $[x - \epsilon, x + \epsilon]$ is a neighbourhood of x,

 $\{x - \epsilon \leq y < \infty\}$ is a neighbourhood of x,

 $[x, x + \epsilon]$ is not a neighbourhood of x.

• A topological space is **Hausdorff** if two distinct points have disjoint neighbourhoods.

Topology is useful to us in defining continuity of maps.

• A map $f : S_1 \to S_2$ is **continuous** if given any open set $U \subset S_2$ its inverse image (or pre-image, what it is an image of) $f^{-1}(U) \subset S_1$ is open. \Box

When this definition is applied to functions from \mathbb{R}^m to \mathbb{R}^n , it is

the same as the usual $\epsilon - \delta$ definition of continuity, which says that • $f: \mathbb{R}^m \to \mathbb{R}^n$ is **continuous** at \mathbf{x}_0 if given $\epsilon > 0$, we can always find a $\delta > 0$ such that $|f(\mathbf{x}) - f(\mathbf{x}_0)| < \epsilon$ whenever $|\mathbf{x} - \mathbf{x}_0| < \delta$. \Box

For the case of functions from a topological space to \mathbb{R}^n , this definition says that

• $f: \mathcal{S} \to \mathbb{R}^n$ is **continuous** at $s_0 \in \mathcal{S}$ if given $\epsilon > 0$, we can always find an open neighbourhood U of s_0 such that $|f(s) - f(s_0)| < \epsilon$ whenever $s \in U$.

• If a map $f : S_1 \to S_2$ is one-to-one and onto, i.e. a bijection, and both f and f^{-1} are continuous, f is called a **homeomorphism** and we say that S_1 and cs_2 are **homeomorphic**.

Proposition: The composition of two continuous maps is a continuous map.

Proof: If $f : S_1 \to S_2$ and $g : S_2 \to S_3$ are continuous maps, and U is some open set in S_3 , then its pre-image $g^{-1}(U)$ is open in S_2 . So $f^{-1}(g^{-1}(U))$, which is the pre-image of that, is open in S_1 . Thus $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$ is open in S_1 . Thus $g \circ f$ is continuous. \Box