Chapter 10

Local flows

We met local flows and integral curves in Chapter 6. Given a vector field v, write its local flow as ϕ_t .

• The collection ϕ_t for $t < \epsilon$ (for some $\epsilon > 0$, or alternatively for t < 1) is a **one-parameter group of local diffeomorphisms**. \Box

Consider the vector field in a neighbourhood U of a point $Q \in \mathcal{M}$. Since $\phi_t : U \to \mathcal{M}, Q \mapsto \gamma_Q(t)$ is **local diffeomorphism**, i.e. diffeomorphism for sufficiently small values of t, we can use ϕ_t to push forward vector fields. At some point P we have the curve $\phi_t(P)$. We push forward a vector field at $t = \epsilon$ to t = 0 and compare with the vector field at t = 0.

We recall that for a map $\varphi : \mathcal{M}_1 \to \mathcal{M}_2$ the pullback of a function $f \in C^{\infty}(\mathcal{M}_2)$ is defined as

$$\varphi^* f = f \circ \varphi : \mathcal{M}_1 \to \mathbb{R} \,, \tag{10.1}$$

and $\varphi^* f \in C^{\infty}(\mathcal{M}_1)$ if φ is C^{∞} .

The pushforward of a vector v_p is defined by

$$\varphi_* v_P(f) = v_P(f \circ \varphi) = v_P(\varphi^* f) \tag{10.2}$$

$$v_P \in T_P \mathcal{M}_1, \quad \varphi_* v_P \in T_{\varphi(P)} \mathcal{M}_2.$$
 (10.3)

If φ is a diffeomorphism, we can define the pushforward of a vector field v by

i.e.
$$\begin{aligned} \varphi_* v(f)|_{\varphi(P)} &= v \ (f \circ \varphi)|_P \\ &= v \ (f \circ \varphi)|_{\varphi^{-1}Q} \\ &= v \ (\varphi^* f)|_{\varphi^{-1}Q} \ . \end{aligned}$$
(10.4)

We can rewrite this definition in several different ways,

$$\begin{aligned} (\varphi_* v)(f) &= v \left(f \circ \varphi \right) \circ \varphi^{-1} \\ &= (\varphi^{-1})^* \left(v \left(f \circ \varphi \right) \right) \\ &= (\varphi^{-1})^* \left(v \left(\varphi^* f \right) \right) \,. \end{aligned}$$
(10.5)

• If $\varphi : \mathcal{M}_1 \to \mathcal{M}_2$ is not invertible, $\varphi_* v$ is not a vector field on \mathcal{M}_2 . If φ^{-1} exists but is not differentiable, $\varphi_* v$ is not differentiable. But there are some φ and some v such that $\varphi_* v$ is a differentiable vector field, even if φ is not invertible or φ^{-1} is not differentiable. Then v and $\varphi_* v$ are said to be φ -related.

Proposition: Given a diffeomorphism $\varphi : \mathcal{M}_1 \to \mathcal{M}_2$ (say both C^{∞} manifolds) the pushforward φ_* is an isomorphism on the Lie algebra of vector fields, i.e.

$$\varphi_*[u, v] = [\varphi_* u, \varphi_* v]. \tag{10.6}$$

Proof:

$$\varphi_*[u, v](f) = [u, v] (f \circ \varphi) \circ \varphi^{-1}$$

= $u (v (f \circ \varphi)) \circ \varphi^{-1} - u \leftrightarrow v$, (10.7)
$$[\varphi_* u, \varphi_* v](f) = \varphi_* u (\varphi_* v (f)) - u \leftrightarrow v$$

= $u (\varphi_* v (f) \circ \varphi) \circ \varphi^{-1} - u \leftrightarrow v$
= $u ((v (f \circ \varphi) \circ \varphi^{-1}) \circ \varphi) \circ \varphi^{-1} - u \leftrightarrow v$

$$= u (\varphi_* v (f) \circ \varphi) \circ \varphi^{-1} - u \leftrightarrow v$$

= $u ((v (f \circ \varphi) \circ \varphi^{-1}) \circ \varphi) \circ \varphi^{-1} - u$
= $u (v (f \circ \varphi)) \circ \varphi^{-1} - u \leftrightarrow v$.

$$= u \left(v \left(f \circ \varphi \right) \right) \circ \varphi^{-1} - u \leftrightarrow v \,. \tag{10.8}$$

A vector field v is said to be **invariant** under a diffeomorphism $\varphi: \mathcal{M} \to \mathcal{M} \text{ if } \varphi_* v = v \text{, i.e. if } \varphi_*(v_P) = v_{\varphi(P)} \text{ for all } P \in \mathcal{M}.$ We can write for any $f \in C^{\infty}(\mathcal{M})$

$$(\varphi_* v) (f) = (\varphi^{-1})^* (v (\varphi^* f))$$

$$\Rightarrow \qquad \varphi^* ((\varphi_* v) (f)) = v (\varphi^* f) ,$$

$$\Rightarrow \qquad \varphi^* \circ \varphi_* v = v \circ \varphi^* . \qquad (10.9)$$

So if v is an invariant vector field, we can write

$$\varphi^* \circ v = v \circ \varphi^* \,. \tag{10.10}$$

This expresses invariance under $\varphi\,,$ and is satisfied by all differential operators invariant under $\varphi\,.$

Consider a vector field u, and the local flow (or one-parameter diffeomorphism group) ϕ_t corresponding to u,

$$\phi_t(Q) = \gamma_Q(t) , \qquad \dot{\gamma}_Q(t) = u(\gamma_Q(t)) . \qquad (10.11)$$

But for any $f \in C^{\infty}(\mathcal{M})$,

$$\dot{\gamma}_{Q}(f) = \frac{d}{dt} \left(f \circ \gamma_{Q}(t) \right)$$

$$= \frac{d}{dt} \left(f \circ \phi_{t}(Q) \right)$$

$$= \frac{d}{dt} \left(\phi_{t}^{*}(f) \right) = u_{\gamma_{Q}(t)}(f) \equiv u(f) \Big|_{\gamma_{Q}(t)}$$
(10.12)

At t = 0 we get the equation

$$\frac{d}{dt} \left(\phi_t^*(f) \right) \Big|_{t=0} = u(f) \Big|_Q \tag{10.13}$$

We can also write

$$\frac{d}{dt}(\phi_t^*f)(Q) = u(f)(\phi_t(Q)) = \phi_t^*u(f)(Q).$$
(10.14)

This formula can be used to solve linear partial differential equations of the form

$$\frac{\partial}{\partial t}f(\boldsymbol{x},t) = \sum_{i=1}^{n} v^{i}(\boldsymbol{x}) \frac{\partial}{\partial x^{i}} f(\boldsymbol{x},t)$$
(10.15)

with initial condition $f(\boldsymbol{x}, 0) = g(\boldsymbol{x})$ and everything smooth. This is an equation on \mathbb{R}^{n+1} , so it can be on a chart for a manifold as well.

We can treat $v^i(\boldsymbol{x})$ as components of a vector field v. Then a solution to this equation is

$$f(\boldsymbol{x},t) = \phi_t^* g(\boldsymbol{x})$$

$$\equiv g \left(\phi_t(\boldsymbol{x}) \right) \equiv g \circ \phi_t(\boldsymbol{x}), \qquad (10.16)$$

where ϕ_t is the flow of v.

Proof:

$$\frac{\partial}{\partial t}f(\boldsymbol{x},t) = \frac{d}{dt}\left(\phi_t^*g\right) = v(f) \equiv v^i \frac{\partial f}{\partial x^i}, \qquad (10.17)$$

using Eq. (10.13).

36

Thus the partial differential equation can be solved by finding the integral curves of v (the flow of v) and then by pushing (also called **dragging**) g along those curves. It can be shown, using well-known theorems about the uniqueness of solutions to first order partial differential equations, that this solution is also unique.

Example: Consider the equation in 2+1 dimensions

$$\frac{\partial}{\partial t}f(\boldsymbol{x},t) = (x-y)\left(\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y}\right)$$
(10.18)

with initial condition $f(\boldsymbol{x},0) = x^2 + y^2$. The corresponding vector field is $v(\boldsymbol{x}) = (x - y, -x + y)$. The integral curve passing through the point $P = (x_0, y_0)$ is given by the coordinates

$$\gamma(t) = (v_x(P)t + x_0, v_y(P)t + y_0), \qquad (10.19)$$

so the integral curve passing through (x, y) in our example is given by

$$\gamma(t) = ((x - y)t + x, (-x + y)t + y)$$
(10.20)
= $\Phi_t(x, y)$,

the flow of v. So the solution is

$$f(\boldsymbol{x},t) = \Phi_t^* f(\boldsymbol{x},0) = f(\boldsymbol{x},0) \circ \Phi_t(x,y)$$

= $[(x-y)t+x]^2 + [(-x+y)t+y]^2$
= $(x-y)^2 t^2 + x^2 + 2(x-y)xt + (x-y)^2 t^2 + y^2 - 2(x-y)yt$
= $2(x-y)^2 t^2 + (x^2+y^2)(1+2t) - 4xyt$. (10.21)