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Chapter 11

Lie derivative

Given some diffeomorphism ϕ, we have Eq. (10.5) for pushforwards
and pullbacks,

(ϕ∗v)f =
(
ϕ−1

)∗
v (ϕ∗(f)) . (11.1)

We will apply this to the flow φt of a vector field u , defined by

d

dt
(φ∗t f)

∣∣∣
t=0

= u(f)
∣∣∣
Q

. (11.2)

Applying this at −t , we get

φ−t∗v(f) =
(
φ−1−t

)∗
v
(
φ∗−t(f)

)
= φ∗t v

(
φ∗−t(f)

)
, (11.3)

where we have used the relation φ−1t = φ−t . Let us differentiate this
equation with t ,

d

dt
(φ−t∗v)(f)

∣∣∣
t=0

=
d

dt
φ∗t v

(
φ∗−t(f)

) ∣∣∣
t=0

(11.4)

On the right hand side, φ∗t acts linearly on vectors and v acts linearly
on functions, so we can imagine At = φ∗t v as a kind of linear operator
acting on the function ft =

(
φ∗−tf

)
. Then the right hand side is of

the form

d

dt
Atft

∣∣∣∣
t=0

=

(
d

dt
At

)
ft

∣∣∣∣
t=0

+At
d

dt
ft

∣∣∣∣
t=0

=

(
d

dt
φ∗t v

)
ft

∣∣∣∣
t=0

+ At

(
d

dt
φ∗−t(f)

)∣∣∣∣
t=0

= u (v(f))
∣∣∣
t=0
− v (u(f))

∣∣∣
t=0

= [u , v](f)
∣∣∣
t=0

. (11.5)
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38 Chapter 11. Lie derivative

The things in the numerator are numbers, so they can be compared
at different points, unlike vectors which may be compared only on
the same space. We can also write this as

lim
t→0

φt∗vφt(P )
− vP

t
= [u , v] . (11.6)

• This has the look of a derivative, and it can be shown to have
the properties of a derivation on the module of vector fields, appro-
priately defined. So the Lie bracket is also called the Lie derivative,
and written as

£uv = [u , v] . (11.7)

The derivation on functions by a vector field u : C∞(M) →
C∞(M) , f 7→ u(f) , can be defined similarly as

u(f) = lim
t→0

φ∗t f − f
t

. (11.8)

• So this can also be called the Lie derivative of f with respect
to u , and written as £uf . 2

Then it is easy to see that

£u(fg) = (£uf) g + f (£ug) ,

and £u(f + ag) = £uf + a£ug . (11.9)

So £u is a derivation on the space C∞(M) . Also,

£u(v + aw) = £uv + a£uw ,

and £u(fv) = (£uf) v + f£uv ∀f ∈ C∞(M) .(11.10)

So £u is a derivation on the module of vector fields. Also, using
Jacobi identity, we see that

£u(v •w) = (£uv) •w + v • (£uw) , (11.11)

where v •w = [v , w] , so £u is a derivation on the Lie algebra of
vector fields.

Lie derivatives are useful in physics because they describe invari-
ances. For functions, £uf = 0 means φ∗t f = f , so the function does
not change along the flow of u . So the flow of u preserves f , or leaves
f invariant.
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If there are two vector fields u and v which leave f invariant,
£uf = 0 = £vf . But we know from the Eq. (11.8), which defines
the Lie derivative of a function that

£u+avf = £uf + a£v = 0 ∀a ∈ R
and [£u ,£v]f = £[u ,v]f = 0 . (11.12)

So the vector fields which preserve f form a Lie algebra.
Similarly, a vector field is invariant under a diffeomorphism ϕ if

ϕ∗v = v , as mentioned earlier. Using the flow of u , we find that a
vector field v is invariant under the flow of u if

φ−tv = v

⇒ £uv = v . (11.13)

So if a vector field w is invariant under the flows of u and v , i.e. if
£uw = 0 = £vw , we find that

0 = £u£vw −£v£uw = £[u ,v]w . (11.14)

Thus again the vector fields leaving w invariant form a Lie algebra.
• Let us also define the corresponding operations for 1-forms. As
we mentioned in Chap. 6, a 1−form is a section of the cotangent

bundle

T ∗M =
⋃
P

T ∗PM . (11.15)

Alternatively, a 1-form is a smooth linear map from the space of
vector fields on M to the space of smooth functions on M ,

ω : v 7→ ω(v) ∈ C∞(M), ω(u+ av) = ω(U) + aω(v) . (11.16)

A 1-form is a rule that (smoothly) selects a cotangent vector at each
point. 2

• Given a smooth map ϕM1 → M2 (say a diffeomorphism, for
convenience), the pullback ϕ∗ω is defined by

(ϕ∗ω) (v) = ω (ϕ∗ω) . (11.17)

• We have already seen the gradient 1-form for a function f :
M → R , which is a linear map from the space of vector fields to
functions,

df(u+ av) = u(f) + av(f) , (11.18)
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40 Chapter 11. Lie derivative

and which can be written as

df =
∂f

∂xi
dxi (11.19)

in some chart. 2

For an arbitrary 1-form ω , we can write in a chart and for any
vector field v ,

ω = ωidx
i , v = vi

∂

∂xi
, ω(v) = ωiv

i . (11.20)

All the components ωi , v
i are smooth functions, so is ωIv

i . The
space of 1-forms is a module. Since the function ω(v) is chart-
independent, we can find the components ωi′ of ω in a new chart
by noting that

ω(v) = ωiv
i = ω′iv

i′ . (11.21)

Note that the notation is somewhat ambiguous here – i′ also runs
from 1 to n , and the prime actually distinguished the chart, or the
coordinate system, rather than the index i .

If the components of v in the new chart are related to those in
the old one by vi

′
= Ai′

j v
j , it follows that

ωi′A
i′
j v

j = ωjv
j ⇒ ωi′A

i′
j = ωj (11.22)

Since coordinate transformations are invertible, we can multiply both
sides of the last equation by A−1 and write

ωi′ =
(
A−1

)j
i′
ωj . (11.23)

For coordinate transformations from a chart {xi} to a chart {x′i′} ,

Ai′
j =

∂x′i
′

∂xj
,

(
A−1

)j
i′

=
∂xj

∂x′i′
(11.24)

so vi
′

=
∂x′i

′

∂xj
vj , ωi′ =

∂xj

∂x′i′
ωj . (11.25)

We can define the Lie derivative of a 1-form very conveniently by
going to a chart, and treating the components of 1-forms and vector
fields as functions,

£uω(v) = £u

(
ωiv

i
)

= uj
∂

∂xj
(
ωiv

i
)

= uj
∂ωi

∂xj
vi + ujωi

∂vi

∂xj
. (11.26)
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But we want to define things such that

£uω(v) = (£uω) (v) + ω (£uv) . (11.27)

We already know the left hand side of this equation from Eq. (11.26),
and the right hand side can be calculated in a chart as

(£uω) (v) + ω (£uv) = (£uω)i v
i + ωi (£uv)i

= (£uω)i v
i + ωi[u , v]i

= (£uω)i v
i + ωi

(
uj
∂vi

∂xj
− vj ∂u

i

∂xj

)
.(11.28)

Equating the right hand side of this with the right hand side of
Eq. (11.26), we can write

(£uω)i = uj
∂ωi

∂xj
+ ωj

∂uj

∂xi
. (11.29)

These are the components of £uω in a given chart {xi} .
For the sake of convenience, let us write down the Lie deriva-

tives of the coordinate basis vector fields and basis 1-forms. The
coordinate basis vector corresponding to the i-th coordinate is

v =
∂

∂xi
⇒ vj = δji . (11.30)

Putting this into the formula for Lie derivatives, we get

£u
∂

∂xi
= [u , v]j

∂

∂xj

=

(
uk
∂vj

∂xk
− vk ∂u

j

∂xk

)
∂

∂xj

=

(
0− δki

∂uj

∂xk

)
∂

∂xj

= −
(
∂uj

∂xi

)
∂

∂xj
. (11.31)

Similarly, the 1-form corresponding to the i-th basis coordinate is

dxi = δijdx
j , i.e.

(
dxi
)
j

= δij . (11.32)

Using this in the formula Eq. (11.29) we get

£udx
i = δik

∂uk

∂xj
dxj =

∂ui

∂xj
dxj . (11.33)
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42 Chapter 11. Lie derivative

There is also a geometric description of the Lie derivative of 1-
forms,

£uω|P = lim
t→0

1

t

[
φ∗tω|φt(P )

− ωP
]

=
d

dt
φ∗tω

∣∣∣∣
P

. (11.34)

We will not discuss this in detail, but only mention that it leads to
the same Leibniz rule as in Eq. (11.27), and the same description in
terms of components as in Eq. (11.29).


