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Chapter 12

Tensors

So far, we have defined tangent vectors, cotangent vectors, and also
vector fields and 1-forms. We will now define tensors. We will do
this by starting with the example of a specific type of tensor.
• A (1, 2) tensor AP at P ∈M is a map

AP : TPM× TPM× T
∗
P
M→ R (12.1)

which is linear in every argument. 2

So given two vectors uP , vP and a covector ωP ,

AP : (uP , vP , ωP ) 7→ AP (uP , vP ;ωP ) ∈ R . (12.2)

Suppose {ea}, {λa} are bases for TPM, T ∗
P
M . Write

Ac
ab = AP (ea, eb;λ

c) . (12.3)

Then for arbitrary vectors uP = uaea , vP = vaea , and covector ωP =
ωaλ

a we get using linearity of the tensor map,

AP (uP , vP ;ωP ) = AP

(
uaea, v

beb;ωcλ
c
)

= uavbωcA
c
ab . (12.4)

It is a matter of convention whether A as written above should
be called a (1, 2) tensor or a (2, 1) tensor, and the convention varies
between books. So it is best to specify the tensor by writing indices
as there is no confusion about Ac

ab .
A tensor of type (p, q) can be defined in the same way,

Ap,q
P

: TPM× · · · × TPM︸ ︷︷ ︸
q times

× T ∗PM× · · · × T ∗PM︸ ︷︷ ︸ → R

p times (12.5)
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44 Chapter 12. Tensors

in such a way that the map is linear in every argument.
• Alternatively, AP is an element of the tensor product space

AP ∈ TPM⊗ · · · ⊗ TPM︸ ︷︷ ︸
p times

⊗ T ∗PM⊗ · · · ⊗ T ∗PM︸ ︷︷ ︸
q times (12.6)

We can define the components of this tensor in the same way that
we did for the (1, 2) tensor. Then a (p, q) tensor has components
which can be written as

A
a1···ap
b1···bq .

• Some special types of (p, q) tensors have special names. A (1, 0)
tensor is a linear map AP : T ∗

P
M→ R , so it is a tangent vector. A

(0, 1) tensor is a cotangent vector. A (p, 0) tensor has components
with p upper indices. It is called a contravariant p−tensor. A
(0, q) tensor has components with q lower indices. It is called a
covariant q−tensor. 2

It is possible to add tensors of the same type, but not of different
types,

A
a1···ap
b1···bq +B

a1···ap
b1···bq = (A+B)

a1···ap
b1···bq . (12.7)

• A tensor field is a rule giving a tensor at each point. 2

We can now define the Lie derivative of a tensor field by using
Leibniz rule in a chart. Let us first consider the components of a
tensor field in a chart. For a (1, 2) tensor field A , the components
in a chart are

Ak
ij = A(

∂

∂xi
,
∂

∂xj
; dxk) . (12.8)

The components are functions of x in a chart. Thus we can write
this tensor field as

A = Ak
ijdx

i ⊗ dxj ⊗ ∂

∂xk
, (12.9)

where the × indicates a ‘product’, in the sense that its action on two
vectors and a 1-form is a product of the respective components,(

dxi ⊗ dxj ⊗ ∂

∂xk

)
(u, v;ω) = uivjωk . (12.10)

Thus we find, in agreement with the earlier definition,

A(u, v;ω) = Ak
iju

ivjωk . (12.11)



c ©
A

m
ita

bh
a

La
hi

ri:
Le

ct
ur

e
N

ot
es

on
D

iff
er

en
tia

lG
eo

m
et

ry
fo

rP
hy

si
ci

st
s

20
11

45

Under a change of charts, i.e. coordinate system xi → x′i
′
, the

components of the tensor field change according to

A = Ak
ij dx

i ⊗ dxj ⊗ ∂

∂xk
= Ak′

i′j′ dx
′i′ ⊗ dx′j′ ⊗ ∂

∂x′k′
(12.12)

Since

dx′i
′

=
∂x′i

′

∂xi
dxi ,

∂

∂x′i′
=

∂xi

∂x′i′
∂

∂xi
(12.13)

(i and i′ are not equal in general), we get

Ak
ij dx

i ⊗ dxj ⊗ ∂

∂xk
= Ak′

i′j′
∂x′i

′

∂xi
dxi ⊗ ∂x′j

′

∂xj
dxj ⊗ ∂xk

∂x′k′
∂

∂xk
.

(12.14)

Equating components, we can write

Ak
ij = Ak′

i′j′
∂x′i

′

∂xi
∂x′j

′

∂xj
∂xk

∂x′k′
(12.15)

Ak′
i′j′ = Ak

ij

∂xi

∂x′i′
∂xj

∂x′j′
∂x′k

′

∂xk
. (12.16)

From now on, we will use the notation ∂i for
∂

∂xi
and ∂if for

∂f

∂xi
unless there is a possibility of confusion. This will save some space
and make the formulae more readable.

We can calculate the Lie derivative of a tensor field (with respect
to a vector field u, say) by using the fact that £u is a derivative on
the modules of vector fields and 1-forms, and by assuming Leibniz
rule for tensor products. Consider a tensor field

T = Tm···n
a···b ∂m ⊗ · · · ⊗ ∂n ⊗ dxa ⊗ · · · ⊗ dxb . (12.17)

Then

£uT = (£uT
m···n
a···b ) ∂m ⊗ · · · ⊗ ∂n ⊗ dxa ⊗ · · · ⊗ dxb

+Tm···n
a···b (£u∂m)⊗ · · · ⊗ ∂n ⊗ dxa ⊗ · · · ⊗ dxb + · · ·

+Tm···n
a···b ∂m ⊗ · · · ⊗ ∂n ⊗ (£udx

a)⊗ · · · ⊗ dxb ,+ · · ·
(12.18)

where the dots stand for the terms involving all the remaining up-
per and lower indices. Since the components of a tensor field are
functions on the manifold, we have

£uT
m···n
a···b = ui∂iT

m···n
a···b , (12.19)
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46 Chapter 12. Tensors

and we also know that

£u∂m = − ∂ui

∂xm
∂i , £udx

a =
∂ua

∂xi
dxi . (12.20)

Putting these into the expression for the Lie derivative for T and
relabeling the dummy indices, we find the components of the Lie
derivative,

(£uT )m···na···b = ui ∂iT
m···n
a···b

−T i···n
a···b ∂iu

m − · · · − Tm···i
a···b ∂iu

n

+Tm···n
i···b ∂au

i + · · ·+ Tm···n
a···i ∂bu

i . (12.21)


