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Chapter 13

Differential forms

There is a special class of tensor fields, which is so useful as to have
a separate treatment. There are called differential p−forms or
p−forms for short.
• A p−form is a (0, p) tensor which is completely antisymmetric,
i.e., given vector fields v1 , · · · , vp ,

ω (v1 , · · · , vi , · · · , vj , · · · , vp) = −ω (v1 , · · · , vj , · · · , vi , · · · , vp)
(13.1)

for any pair i, j . ✷

A 0-form is defined to be a function, i.e. an element of C∞(M) ,
and a 1-form is as defined earlier.

The antisymmetry of any p-form implies that it will give a non-
zero result only when the p vectors are linearly independent. On the
other hand, no more than n vectors can be linearly independent in
an n-dimensional manifold. So p 6 n .

Consider a 2-form A . Given any two vector fields v1 , v2 , we have
A(v1 , v2) = −A(v2 , v1) . Then the components of A in a chart are

Aij = A (∂i , ∂j) = −Aji . (13.2)

Similarly, for a p-form ω , the components are ωi1···ip , and compo-
nents are multiplied by (−1) whenever any two indices are inter-
changed.

It follows that a p-form has

(

n

p

)

independent components in n-

dimensions.
Any 1-form produces a function when acting on a vector field. So

given a pair of 1-forms A,B, it is possible to construct a 2-form ω

47
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48 Chapter 13. Differential forms

by defining

ω(u, v) = A(u)B(v) −B(u)A(v), ∀u, v . (13.3)

• This is usually written as ω = A⊗B−B⊗A , where ⊗ is called
the outer product. ✷

• Then the above construction defines a product written as

ω = A ∧B = −B ∧A , (13.4)

and called the wedge product . Clearly, ω is a 2-form. ✷

Let us work in a coordinate basis, but the results we find can be
generalized to any basis. The coordinate bases for the vector fields,
{∂i} , and 1-forms, {dxi} , satisfy dxi(∂j) = δij . A 1-form A can be

written as A = Aidx
i , and a vector field v can be written as v = vi∂i ,

so that A(v) = Aiv
i . Then for the ω defined above and for any pair

of vector fields u, v,

ω(u, v) = A(u)B(v)−B(u)A(v)

= Aiu
iBjv

j −Biu
iAjv

j

= (AiBj −BiAj)u
ivj . (13.5)

The components of ω are ωij = ω(∂i , ∂j) , so that

ω(u, v) = ω(ui∂i , v
j∂j) = ωiju

ivj . (13.6)

Then ωij = AiBj −BiAj for the 2-form defined above. We can now
construct a basis for 2-forms, which we write as dxi ∧ dxj ,

dxi ∧ dxj = dxi ⊗ dxj − dxj ⊗ dxi . (13.7)

Then a 2-form can be expanded in this basis as

ω =
1

2!
ωijdx

i ∧ dxj , (13.8)

because then

ω(u, v) =
1

2!
ωij

(

dxi ⊗ dxj − dxj ⊗ dxi
)

(u, v)

=
1

2!
ωij

(

uivj − ujvi
)

= ωiju
ivj . (13.9)
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Similarly, a basis for p−forms is

dxi1 ∧ · · · ∧ dxip = dx[i1 ⊗ · · · ⊗ dxip] , (13.10)

where the square brackets stand for total antisymmetrization: all
even permutations of the indices are added and all the odd permu-
tations are subtracted. (Caution: some books define the ‘square
brackets’ as antisymmetrization with a factor 1/p! .) For example,
for a 3-form, a basis is

dxi ∧ dxj ∧ dxk = dxi ⊗ dxj ⊗ dxk − dxj ⊗ dxi ⊗ dxk

+dxj ⊗ dxk ⊗ dxi − dxk ⊗ dxj ⊗ dxi

+dxk ⊗ dxi ⊗ dxj − dxi ⊗ dxk ⊗ dxj . (13.11)

Then an arbitrary 3-form Ω can be written as

Ω =
1

3!
Ωijkdx

i ∧ dxj ∧ dxk . (13.12)

Note that there is a sum over indices, so that the factorial goes away if
we write each basis 3-form up to permutations, i.e. treating different
permutations as equivalent. Thus a p−form α can be written in
terms of its components as

α =
1

p!
αi1···ip dx

i1 ∧ · · · ∧ dxip . (13.13)

Examples: A 2-form in two dimensions can be written as

ω =
1

2!
ωij dx

i ∧ dxj

=
1

2!

(

ω12dx
1 ∧ dx2 + ω21dx

2 ∧ dx1
)

=
1

2!
(ω12 − ω21) dx

1 ∧ dx2

= ω12 dx
1 ∧ dx2 . (13.14)

✷

A 2-form in three dimensions can be written as

ω =
1

2!
ωijdx

i ∧ dxj

= ω12 dx
1 ∧ dx2 + ω23 dx

2 ∧ dx3 + ω31 dx
3 ∧ dx1 (13.15)
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50 Chapter 13. Differential forms

✷

In three dimensions, consider two 1-forms α = αidx
i , β = βidx

i .
Then

α ∧ β = (αiβj − αjβi)
1

2!
dxi ∧ dxj

= αiβjdx
i ∧ dxj

= (α1β2 − α2β1) dx
1 ∧ dx2

+ (α2β3 − α3β2) dx
2 ∧ dx3

+ (α3β1 − α1β3) dx
3 ∧ dx1 . (13.16)

The components are like the cross product of vectors in three dimen-
sions. So we can think of the wedge product as a generalization of
the cross product.
• We can also define the wedge product of a p−form α and a
q−form β as a (p + q)−form satisfying, for any p + q vector fields
v1, · · · , vp+q ,

α ∧ β (v1, · · · , vp+q) =
1

p!q!

∑

P

(−1)deg Pα⊗ β (P (v1, · · · , vp+q)) .

(13.17)
Here P stands for a permutation of the vector fields, and degP is 0 or
1 for even and odd permutations, respectively. In the outer product
on the right hand side, α acts on the first p vector fields in a given
permutation P , and β acts on the remaining q vector fields. ✷

The wedge product above can also be defined in terms of the
components of α and β in a chart as follows.

α =
1

p!
αi1···ip dx

i1 ∧ · · · ∧ dxip

β =
1

q!
βj1···jq dx

j1 ∧ · · · ∧ dxjq

α ∧ β =
1

p!q!
αi1···ip βj1···jq

(

dxi1 ∧ · · · ∧ dxip
)

∧
(

dxj1 ∧ · · · ∧ dxjq
)

.

(13.18)

Note that α ∧ β = 0 if p + q > n , and that a term in which some i
is equal to some j must vanish because of the antisymmetry of the
wedge product.

It can be shown by explicit calculation that wedge products are
associative,

α ∧ (β ∧ γ) = (α ∧ β) ∧ γ . (13.19)
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Cross-products are not associative, so there is a distinction between
cross-products and wedge products. In fact, for 1-forms in three
dimensions, the above equation is analogous to the identity for the
triple product of vectors,

a · (b× c) = (a× b) · c . (13.20)

For a p-form α and q-form β , we find

α ∧ β = (−1)pqβ ∧ α . (13.21)

Proof: Consider the wedge product written in terms of the com-
ponents. We can ignore the parentheses separating the basis forms
since the wedge product is associative. Then we exchange the basis
1-forms. One exchange gives a factor of −1 ,

dxip ∧ dxj1 = −dxj1 ∧ dxip . (13.22)

Continuing this process, we get

dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq

= (−1)pdxj1 ∧ dxi1 ∧ · · · ∧ dxip ∧ dxj2 ∧ · · · ∧ dxjq

= · · ·

= (−1)pqdxj1 ∧ · · · ∧ dxjq ∧ dxi1 ∧ · · · ∧ dxip . (13.23)

Putting back the components, we find

α ∧ β = (−1)pqβ ∧ α (13.24)

as wanted. ✷

• The wedge product defines an algebra on the space of differential
forms. It is called a graded commutative algebra . ✷

• Given a vector field v , we can define its contraction with a
p-form by

ιvω = ω(v, · · · ) (13.25)

with p−1 empty slots. This is a (p−1)-form. Note that the position
of v only affects the sign of the contracted form. ✷

Example: Consider a 2-form made of the wedge product of two
1-forms, ω = λ ∧ µ = λ⊗ µ− µ⊗ λ . Then contraction by v gives

ιvω = ω(v, • ) = λ(v)µ − µ(v)λ = −ω( • , v) . (13.26)
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52 Chapter 13. Differential forms

If we have a p-form ω = 1
p!ωi1···ip dx

i1 ∧ · · · ∧ dxip , its contraction

with a vector field v = vi∂i is

ιvω =
1

(p − 1)!
ωii2···ipv

idxi2 ∧ · · · ∧ dxip . (13.27)

Note the sum over indices. To see how the factor becomes 1
(p−1)! , we

write the contraction as

ιvω =
1

p!
ωi1···ipdx

i1 ∧ · · · ∧ dxip
(

vi∂i
)

. (13.28)

Since the contraction is done in the first slot, so we consider the
action of each basis 1-form dxik on ∂i by carrying dxik to the first
position and then writing a δiki . This gives a factor of (−1) for each
exchange, but we get the same factor by rearranging the indices of
ω , thus getting a +1 for each index. This leads to an overall factor
of p .
• given a diffeomorphism ϕ : M1 → M2 , the pullback of a 1-
form λ (on M2) is ϕ

∗λ , defined by

ϕ∗λ(v) = λ(ϕ∗v) (13.29)

for any vector field v on M1 . ✷

Then we can consider the pullback ϕ∗dxi of a basis 1-form dxi .
For a general 1-form λ = λidx

i , we have ϕ∗λ = ϕ∗(λidx
i) . But

ϕ∗λ(v) = λ(ϕ∗v) = λi dx
i(ϕ∗v) . (13.30)

Now, dxi(ϕ∗v) = ϕ∗dxi(v) and the thing on the right hand side is a
function on M1 , so we can write this as

ϕ∗λ(v) = (ϕ∗λi)ϕ
∗dxi(v) , (13.31)

where ϕ∗λi are now functions on M1 , i.e.

(ϕ∗λi)|
P
= λi|

ϕ(P )
(13.32)

So we can write ϕ∗λ = (ϕ∗λi)ϕ
∗dxi . For the wedge product of two

1-forms,

ϕ∗(λ ∧ µ)(u, v) = (λ ∧ µ)(ϕ∗u , ϕ∗v)

= λ⊗ µ(ϕ∗u , ϕ∗v)− µ⊗ λ(ϕ∗u , ϕ∗v)

= λ(ϕ∗u)µ(ϕ∗v)− µ(ϕ∗u)λ(ϕ∗v)

= ϕ∗λ(u)ϕ∗µ(v)− ϕ∗µ(u)ϕ∗λ(v)

= (ϕ∗λ ∧ ϕ∗µ)(u , v) . (13.33)
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Since u, v are arbitrary vector fields it follows that

ϕ∗(λ ∧ µ) = ϕ∗λ ∧ ϕ∗µ

ϕ∗(dxi ∧ dxj) = ϕ∗dxi ∧ ϕdxj . (13.34)

Since the wedge product is associative, we can write (by assuming
an obvious generalization of the above formula)

ϕ∗

(

dxi ∧ dxj ∧ dxk
)

= ϕ∗

(

(

dxi ∧ dxj
)

∧ dxk
)

= ϕ∗
(

dxi ∧ dxj
)

∧ ϕ∗dxk

= ϕ∗dxi ∧ ϕ∗dxj ∧ ϕ∗dxk , (13.35)

and we can continue this for any number of basis 1-forms. So for any
p-form ω , let us define the pullback ϕ∗ω by

ϕ∗ω(v1 , · · · , vp) = ω (ϕ∗v1 , · · · , ϕ∗vp) , (13.36)

and in terms of components, by

ϕ∗ω =
1

p!

(

ϕ∗ωi1···ip

)

ϕ∗dxi1 ∧ · · · ∧ dxip . (13.37)

We assumed above that the pullback of the wedge product of a
2-form and a 1-form is the wedge product of the pullbacks of the
respective forms, but it is not necessary to make that assumption –
it can be shown explicitly by taking three vector fields and following
the arguments used earlier for the wedge product of two 1-forms.

Then for any p-form α and q-form β we can calculate from this
that

ϕ∗(α ∧ β) = ϕ∗α ∧ ϕ∗β . (13.38)

Thus pullbacks commute with (are distributive over) wedge products.


