Chapter 13

Differential forms

There is a special class of tensor fields, which is so useful as to have a separate treatment. There are called differential p-forms or p-**forms** for short.

A p-**form** is a (0, p) tensor which is completely antisymmetric, • i.e., given vector fields v_1, \cdots, v_p ,

$$\omega (v_1, \cdots, v_i, \cdots, v_j, \cdots, v_p) = -\omega (v_1, \cdots, v_j, \cdots, v_i, \cdots, v_p)$$
(13.1)

or any pair *i*, *i*.

for any pair i, j.

A 0-form is defined to be a function, i.e. an element of $C^{\infty}(\mathcal{M})$, and a 1-form is as defined earlier.

The antisymmetry of any *p*-form implies that it will give a nonzero result only when the p vectors are linearly independent. On the other hand, no more than n vectors can be linearly independent in an *n*-dimensional manifold. So $p \leq n$.

Consider a 2-form A. Given any two vector fields v_1, v_2 , we have $A(v_1, v_2) = -A(v_2, v_1)$. Then the components of A in a chart are

$$A_{ij} = A\left(\partial_i, \partial_j\right) = -A_{ji}. \tag{13.2}$$

Similarly, for a p-form ω , the components are $\omega_{i_1\cdots i_p}$, and components are multiplied by (-1) whenever any two indices are interchanged.

It follows that a *p*-form has $\binom{n}{p}$ independent components in *n*dimensions.

Any 1-form produces a function when acting on a vector field. So given a pair of 1-forms A, B, it is possible to construct a 2-form ω

by defining

$$\omega(u,v) = A(u)B(v) - B(u)A(v), \qquad \forall u, v.$$
(13.3)

• This is usually written as $\omega = A \otimes B - B \otimes A$, where \otimes is called the **outer product**.

• Then the above construction defines a product written as

$$\omega = A \wedge B = -B \wedge A, \qquad (13.4)$$

and called the wedge product. Clearly, ω is a 2-form.

Let us work in a coordinate basis, but the results we find can be generalized to any basis. The coordinate bases for the vector fields, $\{\partial_i\}$, and 1-forms, $\{dx^i\}$, satisfy $dx^i(\partial_j) = \delta^i_j$. A 1-form A can be written as $A = A_i dx^i$, and a vector field v can be written as $v = v^i \partial_i$, so that $A(v) = A_i v^i$. Then for the ω defined above and for any pair of vector fields u, v,

$$\begin{aligned}
\omega(u, v) &= A(u)B(v) - B(u)A(v) \\
&= A_i u^i B_j v^j - B_i u^i A_j v^j \\
&= (A_i B_j - B_i A_j) u^i v^j.
\end{aligned}$$
(13.5)

The components of ω are $\omega_{ij} = \omega(\partial_i, \partial_j)$, so that

$$\omega(u,v) = \omega(u^i \partial_i, v^j \partial_j) = \omega_{ij} u^i v^j .$$
(13.6)

Then $\omega_{ij} = A_i B_j - B_i A_j$ for the 2-form defined above. We can now construct a basis for 2-forms, which we write as $dx^i \wedge dx^j$,

$$dx^{i} \wedge dx^{j} = dx^{i} \otimes dx^{j} - dx^{j} \otimes dx^{i}.$$
(13.7)

Then a 2-form can be expanded in this basis as

$$\omega = \frac{1}{2!} \omega_{ij} dx^i \wedge dx^j , \qquad (13.8)$$

because then

$$\omega(u,v) = \frac{1}{2!} \omega_{ij} \left(dx^i \otimes dx^j - dx^j \otimes dx^i \right) (u,v)$$

= $\frac{1}{2!} \omega_{ij} \left(u^i v^j - u^j v^i \right) = \omega_{ij} u^i v^j.$ (13.9)

48

Similarly, a basis for p-forms is

$$dx^{i_1} \wedge \dots \wedge dx^{i_p} = dx^{[i_1} \otimes \dots \otimes dx^{[i_p]}, \qquad (13.10)$$

where the square brackets stand for total antisymmetrization: all even permutations of the indices are added and all the odd permutations are subtracted. (Caution: some books define the 'square brackets' as antisymmetrization with a factor 1/p!.) For example, for a 3-form, a basis is

$$dx^{i} \wedge dx^{j} \wedge dx^{k} = dx^{i} \otimes dx^{j} \otimes dx^{k} - dx^{j} \otimes dx^{i} \otimes dx^{k} + dx^{j} \otimes dx^{k} \otimes dx^{i} - dx^{k} \otimes dx^{j} \otimes dx^{i} + dx^{k} \otimes dx^{i} \otimes dx^{j} - dx^{i} \otimes dx^{k} \otimes dx^{j}.$$
(13.11)

Then an arbitrary 3-form Ω can be written as

$$\Omega = \frac{1}{3!} \Omega_{ijk} dx^i \wedge dx^j \wedge dx^k \,. \tag{13.12}$$

Note that there is a sum over indices, so that the factorial goes away if we write each basis 3-form up to permutations, i.e. treating different permutations as equivalent. Thus a p-form α can be written in terms of its components as

$$\alpha = \frac{1}{p!} \alpha_{i_1 \cdots i_p} \, dx^{i_1} \wedge \cdots \wedge dx^{i_p} \,. \tag{13.13}$$

Examples: A 2-form in two dimensions can be written as

$$\omega = \frac{1}{2!} \omega_{ij} dx^{i} \wedge dx^{j}
= \frac{1}{2!} (\omega_{12} dx^{1} \wedge dx^{2} + \omega_{21} dx^{2} \wedge dx^{1})
= \frac{1}{2!} (\omega_{12} - \omega_{21}) dx^{1} \wedge dx^{2}
= \omega_{12} dx^{1} \wedge dx^{2}.$$
(13.14)

A 2-form in three dimensions can be written as

$$\omega = \frac{1}{2!} \omega_{ij} dx^{i} \wedge dx^{j}$$

= $\omega_{12} dx^{1} \wedge dx^{2} + \omega_{23} dx^{2} \wedge dx^{3} + \omega_{31} dx^{3} \wedge dx^{1}$ (13.15)

In three dimensions, consider two 1-forms $\alpha = \alpha_i dx^i\,, \beta = \beta_i dx^i\,.$ Then

$$\begin{aligned} \alpha \wedge \beta &= (\alpha_i \beta_j - \alpha_j \beta_i) \frac{1}{2!} dx^i \wedge dx^j \\ &= \alpha_i \beta_j dx^i \wedge dx^j \\ &= (\alpha_1 \beta_2 - \alpha_2 \beta_1) dx^1 \wedge dx^2 \\ &+ (\alpha_2 \beta_3 - \alpha_3 \beta_2) dx^2 \wedge dx^3 \\ &+ (\alpha_3 \beta_1 - \alpha_1 \beta_3) dx^3 \wedge dx^1 . \end{aligned}$$
(13.16)

The components are like the cross product of vectors in three dimensions. So we can think of the wedge product as a generalization of the cross product.

• We can also define the **wedge product** of a p-form α and a q-form β as a (p+q)-form satisfying, for any p+q vector fields v_1, \dots, v_{p+q} ,

$$\alpha \wedge \beta (v_1, \cdots, v_{p+q}) = \frac{1}{p!q!} \sum_P (-1)^{\deg P} \alpha \otimes \beta \left(P \left(v_1, \cdots, v_{p+q} \right) \right) .$$
(13.17)

Here P stands for a permutation of the vector fields, and deg P is 0 or 1 for even and odd permutations, respectively. In the outer product on the right hand side, α acts on the first p vector fields in a given permutation P, and β acts on the remaining q vector fields.

The wedge product above can also be defined in terms of the components of α and β in a chart as follows.

$$\alpha = \frac{1}{p!} \alpha_{i_1 \cdots i_p} dx^{i_1} \wedge \cdots \wedge dx^{i_p}$$

$$\beta = \frac{1}{q!} \beta_{j_1 \cdots j_q} dx^{j_1} \wedge \cdots \wedge dx^{j_q}$$

$$\alpha \wedge \beta = \frac{1}{p!q!} \alpha_{i_1 \cdots i_p} \beta_{j_1 \cdots j_q} \left(dx^{i_1} \wedge \cdots \wedge dx^{i_p} \right) \wedge \left(dx^{j_1} \wedge \cdots \wedge dx^{j_q} \right).$$
(13.18)

Note that $\alpha \wedge \beta = 0$ if p + q > n, and that a term in which some *i* is equal to some *j* must vanish because of the antisymmetry of the wedge product.

It can be shown by explicit calculation that wedge products are associative,

$$\alpha \wedge (\beta \wedge \gamma) = (\alpha \wedge \beta) \wedge \gamma. \tag{13.19}$$

50

Cross-products are not associative, so there is a distinction between cross-products and wedge products. In fact, for 1-forms in three dimensions, the above equation is analogous to the identity for the triple product of vectors,

$$\boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c}) = (\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c} \,. \tag{13.20}$$

For a *p*-form α and *q*-form β , we find

$$\alpha \wedge \beta = (-1)^{pq} \beta \wedge \alpha \,. \tag{13.21}$$

Proof: Consider the wedge product written in terms of the components. We can ignore the parentheses separating the basis forms since the wedge product is associative. Then we exchange the basis 1-forms. One exchange gives a factor of -1,

$$dx^{i_p} \wedge dx^{j_1} = -dx^{j_1} \wedge dx^{i_p} \,. \tag{13.22}$$

Continuing this process, we get

$$dx^{i_1} \wedge \dots \wedge dx^{i_p} \wedge dx^{j_1} \wedge \dots \wedge dx^{j_q}$$

= $(-1)^p dx^{j_1} \wedge dx^{i_1} \wedge \dots \wedge dx^{i_p} \wedge dx^{j_2} \wedge \dots \wedge dx^{j_q}$
= \dots
= $(-1)^{pq} dx^{j_1} \wedge \dots \wedge dx^{j_q} \wedge dx^{i_1} \wedge \dots \wedge dx^{i_p}$. (13.23)

Putting back the components, we find

$$\alpha \wedge \beta = (-1)^{pq} \beta \wedge \alpha \tag{13.24}$$

as wanted.

• The wedge product defines an algebra on the space of differential forms. It is called a **graded commutative algebra**.

• Given a vector field v, we can define its **contraction** with a p-form by

$$\mu_v \omega = \omega(v, \cdots) \tag{13.25}$$

with p-1 empty slots. This is a (p-1)-form. Note that the position of v only affects the sign of the contracted form. \Box

Example: Consider a 2-form made of the wedge product of two 1-forms, $\omega = \lambda \land \mu = \lambda \otimes \mu - \mu \otimes \lambda$. Then contraction by v gives

$$\iota_v \omega = \omega(v, \bullet) = \lambda(v)\mu - \mu(v)\lambda = -\omega(\bullet, v).$$
(13.26)

If we have a *p*-form $\omega = \frac{1}{p!} \omega_{i_1 \cdots i_p} dx^{i_1} \wedge \cdots \wedge dx^{i_p}$, its contraction with a vector field $v = v^i \partial_i$ is

$$\iota_v \omega = \frac{1}{(p-1)!} \,\omega_{ii_2\cdots i_p} v^i dx^{i_2} \wedge \cdots \wedge dx^{i_p} \,. \tag{13.27}$$

Note the sum over indices. To see how the factor becomes $\frac{1}{(p-1)!}$, we write the contraction as

$$\iota_v \omega = \frac{1}{p!} \omega_{i_1 \cdots i_p} dx^{i_1} \wedge \cdots \wedge dx^{i_p} \left(v^i \partial_i \right) \,. \tag{13.28}$$

Since the contraction is done in the first slot, so we consider the action of each basis 1-form dx^{i_k} on ∂_i by carrying dx^{i_k} to the first position and then writing a $\delta_i^{i_k}$. This gives a factor of (-1) for each exchange, but we get the same factor by rearranging the indices of ω , thus getting a +1 for each index. This leads to an overall factor of p.

• given a diffeomorphism $\varphi : \mathcal{M}_1 \to \mathcal{M}_2$, the **pullback** of a 1-form λ (on \mathcal{M}_2) is $\varphi^* \lambda$, defined by

$$\varphi^* \lambda(v) = \lambda(\varphi_* v) \tag{13.29}$$

for any vector field v on \mathcal{M}_1 .

Then we can consider the pullback $\varphi^* dx^i$ of a basis 1-form dx^i . For a general 1-form $\lambda = \lambda_i dx^i$, we have $\varphi^* \lambda = \varphi^* (\lambda_i dx^i)$. But

$$\varphi^*\lambda(v) = \lambda(\varphi_*v) = \lambda_i \, dx^i(\varphi_*v) \,. \tag{13.30}$$

Now, $dx^i(\varphi_*v) = \varphi^* dx^i(v)$ and the thing on the right hand side is a function on \mathcal{M}_1 , so we can write this as

$$\varphi^* \lambda(v) = (\varphi^* \lambda_i) \varphi^* dx^i(v), \qquad (13.31)$$

where $\varphi^* \lambda_i$ are now functions on \mathcal{M}_1 , i.e.

$$\left(\varphi^*\lambda_i\right)\Big|_P = \left.\lambda_i\right|_{\varphi(P)} \tag{13.32}$$

So we can write $\varphi^*\lambda = (\varphi^*\lambda_i) \varphi^* dx^i$. For the wedge product of two 1-forms,

$$\varphi^{*}(\lambda \wedge \mu)(u, v) = (\lambda \wedge \mu)(\varphi_{*}u, \varphi_{*}v)$$

$$= \lambda \otimes \mu(\varphi_{*}u, \varphi_{*}v) - \mu \otimes \lambda(\varphi_{*}u, \varphi_{*}v)$$

$$= \lambda(\varphi_{*}u)\mu(\varphi_{*}v) - \mu(\varphi_{*}u)\lambda(\varphi_{*}v)$$

$$= \varphi^{*}\lambda(u)\varphi^{*}\mu(v) - \varphi^{*}\mu(u)\varphi^{*}\lambda(v)$$

$$= (\varphi^{*}\lambda \wedge \varphi^{*}\mu)(u, v). \qquad (13.33)$$

Since u, v are arbitrary vector fields it follows that

φ

$$\varphi^*(\lambda \wedge \mu) = \varphi^* \lambda \wedge \varphi^* \mu$$

* $(dx^i \wedge dx^j) = \varphi^* dx^i \wedge \varphi dx^j$. (13.34)

Since the wedge product is associative, we can write (by assuming an obvious generalization of the above formula)

$$\varphi^* \left(dx^i \wedge dx^j \wedge dx^k \right) = \varphi^* \left(\left(dx^i \wedge dx^j \right) \wedge dx^k \right)$$
$$= \varphi^* \left(dx^i \wedge dx^j \right) \wedge \varphi^* dx^k$$
$$= \varphi^* dx^i \wedge \varphi^* dx^j \wedge \varphi^* dx^k , \quad (13.35)$$

and we can continue this for any number of basis 1-forms. So for any p-form ω , let us define the pullback $\varphi^* \omega$ by

$$\varphi^*\omega(v_1,\cdots,v_p) = \omega\left(\varphi_*v_1,\cdots,\varphi_*v_p\right), \qquad (13.36)$$

and in terms of components, by

$$\varphi^*\omega = \frac{1}{p!} \left(\varphi^*\omega_{i_1\cdots i_p}\right) \varphi^* dx^{i_1} \wedge \cdots \wedge dx^{i_p} \,. \tag{13.37}$$

We assumed above that the pullback of the wedge product of a 2-form and a 1-form is the wedge product of the pullbacks of the respective forms, but it is not necessary to make that assumption – it can be shown explicitly by taking three vector fields and following the arguments used earlier for the wedge product of two 1-forms.

Then for any $p\text{-form }\alpha$ and $q\text{-form }\beta$ we can calculate from this that

$$\varphi^*(\alpha \wedge \beta) = \varphi^* \alpha \wedge \varphi^* \beta \,. \tag{13.38}$$

Thus pullbacks commute with (are distributive over) wedge products.