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Chapter 14

Exterior derivative

The exterior derivative is a generalization of the gradient of a func-
tion. It is a map from p-forms to (p + 1)-forms. This should be a
derivation, so it should be linear,

d(α+ ω) = dα+ dω ∀p-formsα , ω . (14.1)

This should also satisfy Leibniz rule, but the algebra of p-forms is
not a commutative algebra but a graded commutator algebra, i.e.,
involves a factor of (−1)pq for exchanges,

α ∧ β = (−1)pqβ ∧ α , (14.2)

as we have seen. We wish to define the exterior derivative so that it
is compatible with this property, i.e.,

d(α ∧ β) = dα ∧ β + (−1)pqdβ ∧ α . (14.3)

Alternatively we can write

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ . (14.4)

This will be the Leibniz rule for wedge products. Note that it gives
the correct result when one or both of α, β are 0-forms, i.e., functions.
The two formulas are identical by virtue of the fact that dβ is a
(q + 1)-form, so that

α ∧ dβ = (−1)p(q+1)dβ ∧ α . (14.5)

We will try to define the exterior derivative in a way such that it has
these properties.
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Let us define the exterior derivative of a p-form ω in a chart as

dω =
1

p!
∂iωi1···ip dx

i
∧ dxi1 ∧ · · · ∧ dxip (14.6)

This clearly has the first property of linearity. To check the (graded)
Leibniz rule, let us write α ∧ β in components. Then

d(α ∧ β) =
1

p!q!
∂i

(

αi1···ipβj1···jq
)

dxi ∧ dxi1 ∧ · · · ∧ dxjq

=
1

p!q!

[(

∂iαi1···ip

)

βj1···jq + αi1···ip

(

∂iβj1···jq
)]

dxi ∧ dxi1 ∧ · · · ∧ dxjq

=
1

p!q!

(

∂iαi1···ip

)

βj1···jq dx
i
∧ dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · dxjq

+
1

p!q!
(−1)p αi1···ip

(

∂iβj1···jq
)

dxi1 ∧ · · · ∧ dxip ∧ dxi ∧ dxj1 ∧ · · · dxjq

= dα ∧ β + (−1)pα ∧ dβ . (14.7)

A third property of the exterior derivative immediately follows
from here,

d2 = 0 . (14.8)

To see this, we write

d(dω) =
1

p!
d
(

∂iωi1···ipdx
i
∧ dxi1 ∧ · · · dxip

)

=
1

p!
∂j∂iωi1···ipdx

j
∧ dxi ∧ dxi1 ∧ · · · dxip . (14.9)

But the wedge product is antisymmetric, dxj ∧ dxi = −dxi ∧ dxj ,

and the indices are summed over, so the above object must be anti-
symmetric in ∂j , ∂i . But that vanishes. So d2 = 0 on all forms.

Note that we can also write

dω =
1

p!

(

dωi1···ip

)

∧ dxi1 ∧ · · · dxip , (14.10)

where the object in parentheses is a gradient 1-form corresponding
to the gradient of the component.

Consider a 1-form A = Aµdx
µ where Aµ are smooth functions on

M . Then using this definition we can write

dA = (dAν) ∧ dxν

= ∂µAνdx
µ
∧ dxν

=
1

2
(∂µAν − ∂νAµ) dx

µ
∧ dxν

⇒ (dA)µν = ∂µAν − ∂νAµ . (14.11)
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56 Chapter 14. Exterior derivative

We can generalize this result to write for a p-form,

α =
1

p!
αµ1···µp

dxµ1 ∧ · · · ∧ dxµp (14.12)

dα =
1

p!

(

dαµ1···µp

)

dxµ1 ∧ · · · ∧ dxµp

=
1

(p+ 1)!
∂[µαµ1···µp]dx

µ
∧ dxµ1 ∧ · · · ∧ dxµp

⇒ (dα)µµ1 ···µp
= ∂[µαµ1···µp] (14.13)

Example: For p = 1 i.e. for a 1-form A we get from this formula
(dA)µν = ∂µAν − ∂νAµ , in agreement with our previous calculation.

For p = 2 we have a 2-form, call it α. Then using this formula
we get

(dα)µνλ = ∂[µανλ]

= ∂µανλ − ∂ναµλ + ∂ναλµ − ∂λανµ + ∂λαµν − ∂µαλν .

(14.14)

Note that d is not defined on arbitrary tensors, but only on forms.
✷

By definition, d2 = 0 on any p-form. So if α = dβ , it follows that
dα = 0 . But given a p-form α for which dα = 0 , can we say that
there must be some (p − 1)-form β such that α = dβ ?
• This is a good place to introduce some terminology. Any form
ω such that dω = 0 is called closed, whereas any form α such that
α = dβ is called exact. ✷

So every exact form is closed. Is every closed form exact? The
answer is yes, in a sufficiently small neighbourhood. We say that
every closed form is locally exact. Note that if a p-form α = dβ , we
cannot uniquely specify the (p− 1)-form β since for any (p− 2)-form
γ , we can always write α = dβ′ , where β′ = β + dγ .

Thus a more precise statement is that given any p-form α such
that dα = 0 in a neighbourhood of some point P , there is some
neighbourhood of this point and some (p−1)-form β such that α = dβ

in that neighbourhood. But this may not be true globally. This
statement is known as the Poincaré lemma. ✷

Example: In R
2 remove the origin. Consider the 1-form

α =
xdy − ydx

x2 + y2
. (14.15)
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Then

dα =

(

1

x2 + y2
−

2x2

(x2 + y2)2

)

dx ∧ dy −

(

1

x2 + y2
−

2y2

(x2 + y2)2

)

dy ∧ dx

=
2

x2 + y2
dx ∧ dy − 2

x2 + y2

(x2 + y2)2
dx ∧ dy = 0 . (14.16)

Introduce polar coordinates r, θ with x = r cos θ , y = r sin θ .
Then

dx = dr cos θ − r sin θdθ dy = dr sin θ + r cos θdθ

α =
r cos θ (sin θdr + r cos θdθ)

r2
−

r sin θ (cos θdr − r sin θdθ)

r2

=
r2

(

cos2 θ + sin2 θ
)

dθ

r2
= dθ . (14.17)

Thus α is exact, but θ is multivalued so there is no function f

such that α = df everywhere. In other words, α = dθ is exact only
in a neighbourhood small enough that θ remains single-valued.


