Chapter 16

Metric tensor

• A metric on a vector space V is a function $g: V \times V \to \mathbb{R}$ which is

i) bilinear:

$$
g(av_1 + v_2, w) = ag(v_1, w) + g(v_2, w)
$$

$$
g(v, w_1 + aw_2) = g(v, w_1) + ag(v, w_2),
$$
 (16.1)

i.e., g is a $(0,2)$ tensor;

ii) symmetric:

$$
g(v, w) = g(w, v); \tag{16.2}
$$

iii) non-degenerate:

$$
g(v, w) = 0 \qquad \forall w \qquad \Rightarrow v = 0. \tag{16.3}
$$

 \Box

• If for some $v, w \neq 0$, we find that $g(v, w) = 0$, we say that v, w are orthogonal. \Box

Given a metric g on V , we can always find an **orthonormal basis** $\{e_{\mu}\}\$ such that $g(e_{\mu}, e_{\nu}) = 0$ if $\mu \neq \nu$ and ± 1 if $\mu = \nu$. \Box

• If the number of $(+1)$'s is p and the number of (-1) 's is q, we say that the metric has **signature** (p, q) .

We have defined a metric for a vector space. We can generalize this definition to a manifold M by the following.

• A metric q on a manifold M is a $(0, 2)$ tensor field such that if (v, w) are smooth vector fields, $q(v, w)$ is a smooth function on M, and has the properties (16.1), (16.2) and (16.3) mentioned earlier. \Box

It is possible to show that smoothness implies that the signature is constant on any connected component of $\mathcal M$, and we will assume that it is constant on all of $\mathcal M$.

A vector space becomes related to its dual space by the metric. Given a vector space V with metric g , and vector v defines a linear map $g(v, \cdot): V \to \mathbb{R}, w \mapsto g(v, w) \in \mathbb{R}$. Thus $g(v, \cdot) \in V^*$ where V^* is the dual space of V. But $g(v, \cdot)$ is itself linear in v, so the map $V \to V^*$ defined by $g(v, \cdot)$ is linear. Since g is non-degenerate, this map is an isomorphism. It then follows that on a manifold we can use the metric to define a linear isomorphism between vectors and 1-forms.

In a basis, the components of the metric are $g_{\mu\nu} = g(e_{\mu}, e_{\nu})$. This is an $n \times n$ matrix in an *n*-dimensional manifold. We can thus write $g(v, w) = g_{\mu\nu}v^{\mu}w^{\nu}$ in terms of the components. Non-degeneracy implies that this matrix is invertible. Let $g^{\mu\nu}$ denote the inverse matrix. Then, by definition of an inverse matrix, we have

$$
g_{\mu\nu}g^{\nu\lambda} = \delta^{\lambda}_{\mu} = g^{\lambda\nu}g_{\mu\nu}.
$$
 (16.4)

Then the linear isomorphism takes the following form.

i) If $v = v^{\mu} e_{\mu}$ is a vector field in a chart, and $\{\lambda^{\mu}\}\$ is the dual basis to $\{e_{\mu}\},\$

$$
g(v, \cdot) = v_{\mu} \lambda^{\mu}, \qquad (16.5)
$$

where $v_{\mu} = g_{\mu\nu}v^{\nu}$.

ii) If $A = A_{\mu} \lambda^{\mu}$ is a 1-form written in a basis $\{\lambda^{\mu}\}\,$, the corresponding vector field is $A^{\mu}e_{\mu}$, where $A^{\mu} = g^{\mu\nu}A_{\nu}$.

This is the isomorphism between vector fields and 1-forms. (We could of course define a similar isomorphism between vectors and covectors without referring to a manifold.) A similar isomorphism holds for tensors, e.g. in terms of components,

$$
T^{\mu\nu} \longleftrightarrow T^{\mu}_{\ \nu} \longleftrightarrow T_{\mu}^{\ \nu} \longleftrightarrow T_{\mu\nu} \tag{16.6}
$$

$$
T^{\mu\nu\rho\cdots} \longleftrightarrow T^{\mu\nu}{}_{\rho}{}^{\cdots} \longleftrightarrow T^{\mu\nu}{}_{\rho}{}_{\cdots} \longleftrightarrow T_{\mu\nu\rho}{}^{\cdots} \longleftrightarrow \cdots (16.7)
$$

These correspondences are not equalities — the components are not equal. What it means is that, if we know one set of components, say $T^{\mu\nu\rho\cdots}$, and the metric, we also know every other set of components.

• Using the fact that a non-degenerate metric defines a 1-1 linear map between vectors and 1-forms, we can define an inner product of 1−forms, by

$$
\langle A | B \rangle = g^{\mu\nu} A_{\mu} B_{\nu} \tag{16.8}
$$

for 1-forms A, B . This result is independent of the choice of basis, i.e. independent of the coordinate system, just like the inner product of vector fields,

$$
\langle v | w \rangle = g(v, w) = g_{\mu\nu} v^{\mu} w^{\nu}. \qquad (16.9)
$$

 \Box

Given a manifold with metric, there is a canonical volume form dV (sometimes written as vol), which in a coordinate chart reads

$$
dV = \sqrt{|\det g_{\mu\nu}|} dx^1 \wedge \dots \wedge dx^n.
$$
 (16.10)

Note that despite the notation, this is not a 1-form, nor the gradient of some function V . This is clearly a volume form because it is an n-form which is non-zero everywhere, as $g_{\mu\nu}$ is non-degenerate.

We need to show that this definition is independent of the chart. Take an overlapping chart. Then in the new chart, the corresponding volume form is

$$
dV' = \sqrt{|\det g'_{\mu\nu}|} dx'^1 \wedge \dots \wedge dx'^n.
$$
 (16.11)

We wish to show that $dV' = dV$. In the overlap,

$$
dx^{\prime \mu} = \frac{\partial x^{\prime \mu}}{\partial x^{\nu}} dx^{\nu} = A^{\mu}_{\nu} dx^{\nu} \text{ (say)}
$$
 (16.12)

Then $dx'^1 \wedge \cdots \wedge dx'^n = (\det A) dx^1 \wedge \cdots \wedge dx^n$.

On the other hand, if we look at the components of the metric tensor in the new chart,

$$
g'_{\mu\nu} = g(\partial'_{\mu}, \partial'_{\nu})
$$

= $\left(\frac{\partial x^{\alpha}}{\partial x'^{\mu}} \partial_{\alpha}, \frac{\partial x^{\beta}}{\partial x'^{\nu}} \partial_{\beta}\right)$
= $g\left((A^{-1})^{\alpha}_{\mu} \partial_{\alpha}, (A^{-1})^{\beta}_{\nu} \partial_{\beta}\right)$
= $(A^{-1})^{\alpha}_{\mu} (A^{-1})^{\beta}_{\nu} g_{\alpha\beta}.$ (16.13)

Taking determinants, we find

$$
\det g'_{\mu\nu} = (\det A)^{-2} (\det g_{\mu\nu}) . \qquad (16.14)
$$

Thus

$$
\sqrt{|\det g'_{\mu\nu}|} = |\det A|^{-1} \sqrt{|\det g_{\mu\nu}|}, \qquad (16.15)
$$

and so $dV' = dV$.

• This is called the metric volume form and written as

$$
dV = \sqrt{|g|} dx^1 \wedge \dots \wedge dx^n \qquad (16.16)
$$

in a chart. $\hfill \square$

When we write dV , sometimes we mean the *n*-form as defined above, and sometimes we mean $\sqrt{|g|}d^{n}x$, the measure for the usual integral. Another way of writing the volume form in a chart is in terms of its components,

$$
dV = \frac{\sqrt{|g|}}{n!} \epsilon_{\mu_1 \cdots \mu_n} dx^{\mu_1} \wedge \cdots \wedge dx^{\mu_n}
$$
 (16.17)

where ϵ is the totally antisymmetric Levi-Civita symbol, with $\epsilon_{12\cdots n} = +1$. Thus $\sqrt{|g|} \epsilon_{\mu_1\cdots\mu_n}$ are the components of the volume form.