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Chapter 17

Hodge duality

We will next define the Hodge star operator. We will defineit in a
chart rather than abstractly.
• The Hodge star operator, denoted ? in an n-dimensional
manifold is a map from p-forms to (n− p)-forms given by

(?ω)µ1···µn−p
≡
√
|g|
p!

εµ1···µn g
µn−p+1ν1 · · · gµnνp ων1···νp , (17.1)

where ω is a p-form. 2

The ? operator acts on forms, not on components.
Example: Consider R3 with metric +++, i.e. gµν =

diag(1, 1, 1) . Then |g| ≡ g = 1 , gµνdiag(1, 1, 1) . Write the coordi-
nate basis 1-forms as dx, dy, dz . Their components are clearly

(dx)i = δ1i , (dy)i = δ2i , (dz)i = δ3i , (17.2)

the δ’s on the right hand sides are Kroenecker deltas. So

(?dx)ij = εijkg
kl(dx)l = εijkg

klδ1l = εijkg
k1

⇒ ?dx =
1

2!
(?dx)ijdx

i ∧ dxj =
1

2!
εijkg

k1dxi ∧ dxj

gk1 = 1 for k = 1 , 0 otherwise

⇒ ?dx =
1

2!

(
dx2 ∧ dx3 − dx3 ∧ dx2

)
= dx2 ∧ dx3 = dy ∧ dz .

(17.3)

Similarly, ?dy = dz ∧ dx , ?dz = dx ∧ dy . 2
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66 Chapter 17. Hodge duality

Example: Consider p = 0 (scalar), i.e. a 0-form ω in n dimen-
sions.

(?ω)µ1···µn =
√
|g|εµ1···µnω

⇒ (?1)µ1···µn =
√
|g|εµ1···µn

⇒ (?1) =

√
|g|
n!

εµ1···µndx
µ1 ∧ · · · ∧ dxµn

= dV (17.4)

2

Example: p = n . Then

(?ω) =

√
|g|
n!

εµ1···µng
µ1ν1 · · · gµnνnων1···νn . (17.5)

For the volume form,

dV =

√
|g|
n!

εµ1···µndx
µ1 ∧ · · · ∧ dxµn

(dV )ν1···νn =
√
|g|εν1···νn

(?dV ) =
|g|
n!
εµ1···µng

µ1ν1 · · · gµnνnεν1···νn

=
|g|
n!
n!(det g)−1 =

|g|
n!

n!

g
= sign(g) = (−1)s ,(17.6)

where s is the number of (−1) in gµν . 2

So we find that

?(?1) = ?dV = (−1)s , (17.7)

and
?(?dV ) = (−1)s(?1) = (−1)sdV , (17.8)

i.e., (?)2 = (−1)s on 0-forms and n-forms.
In general, on a p-form in an n-dimensional manifold with signa-

ture (s, n− s) , it can be shown in the same way that

(?)2 = (−1)p(n−p)+s . (17.9)

In particular, in four dimensional Minkowski space, s = 1, n = 4 , so

(?)2 = (−1)p(4−p)+1 . (17.10)
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It is useful to work out the Hodge dual of basis p-forms. Suppose
we have a basis p-form dxI1 ∧ · · · ∧ dxIp , where the indices are ar-
ranged in increasing order Ip > · · · > I1 . Then its components are

p!δI1µ1 · · · δ
Ip
µp . So

?
(
dxI1 ∧ · · · ∧ dxIp

)
ν1···νn−p

=

√
|g|
p!

εν1···νn−pµ1···µpg
µ1µ′1 · · · gµpµ′p p! δI1

µ′1
· · · δIpµ′p

=
√
|g| εν1···νn−pµ1···µpg

µ1I1 · · · gµpIp . (17.11)

We will use this to calculate ?ω ∧ ω .
For a p-form ω , we have

ω =
1

p!
ωµ1···µpdx

µ1 ∧ · · · ∧ dxµp

=
∑
I

ωI1···Ipdx
I1 ∧ · · · ∧ dxIp (17.12)

where the sum over I means a sum over all possible index sets I =
I1 < · · · < Ip , but there is no sum over the indices {I1, · · · , Ip}
themselves, in a given index set the Ik are fixed. Using the dual of
basis p−forms, and Eq. (13.13), we get

?ω =
∑
I

ωI1···Ip ? (dxI1 ∧ · · · ∧ dxIp)

=
∑
I

√
|g|

(n− p)!
εν1···νn−pµ1···µpg

µ1I1 · · · gµpIp ωI1···Ipdxν1 ∧ · · · ∧ dxνn−p .

(17.13)

The sum over I is a sum over different index sets as before, and
the Greek indices are summed over as usual. Thus we calculate

?ω ∧ ω =

√
|g|

(n− p)!
∑
I,J

εν1···νn−pµ1···µpg
µ1I1 · · · gµpIpωI1···Ip ×

dxν1 ∧ · · · ∧ dxνn−p ∧
(
ωJ1···Jpdx

J1 ∧ · · · ∧ dxJp
)

=

√
|g|

(n− p)!
∑
I,J

εν1···νn−pµ1···µpg
µ1I1 · · · gµpIpωI1···IpωJ1···Jp ×

dxν1 ∧ · · · ∧ dxνn−p ∧ dxJ1 ∧ · · · ∧ dxJp (17.14)
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68 Chapter 17. Hodge duality

We see that the set {ν1, · · · , νn−p} cannot have any overlap with the
set J = {J1, · · · , Jp}, because of the wedge product. On the other
hand, {ν1, · · · , νn−p} cannot have any overlap with {µ1, · · · , µp} be-
cause ε is totally antisymmetric in its indices. So the set {µ1, · · · , µp}
must have the same elements as the set J = {J1, · · · , Jp} , but they
may not be in the same order.

Now consider the case where the basis is orthogonal, i.e. gµν is
diagonal. Then gµkIk = gIkIk etc. and we can write

?ω ∧ ω =

√
|g|

(n− p)!
∑
I,J

εν1···νn−pI1···Ipg
I1I1 · · · gIpIpωI1···IpωJ1···Jp ×

dxν1 ∧ · · · ∧ dxνn−p ∧ dxJ1 ∧ · · · ∧ dxJp . (17.15)

We see that in each term of the sum, the indices {I1 · · · Ip} must be
the same as {J1 · · · Jp} because both sets are totally antisymmetrized
with the indices {ν1 · · · νn−p}.

Since both sets are ordered, it follows that we can replace J by
I,

?ω ∧ ω =

√
|g|

(n− p)!
∑
I

εν1···νn−pI1···Ipg
I1I1 · · · gIpIpωI1···IpωI1···Ip ×

dxν1 ∧ · · · ∧ dxνn−p ∧ dxI1 ∧ · · · ∧ dxIp

=

√
|g|

(n− p)!
∑
I

εν1···νn−pI1···Ipω
I1···IpωI1···Ip ×

dxν1 ∧ · · · ∧ dxνn−p ∧ dxI1 ∧ · · · ∧ dxIp . (17.16)

In each term of this sum, the indices {ν1 · · · νn−p} are completely
determined, so we can replace them by the corresponding ordered
set K = K1 < · · · < Kn−p , which is completely determined by the
set I , so that

?ω ∧ ω =
√
|g|
∑
I

εK1···Kn−pI1···Ipω
I1···IpωI1···Ip ×

dxK1 ∧ · · · ∧ dxKn−p ∧ dxI1 ∧ · · · ∧ dxIp .(17.17)

The indices on this ε are a permutation of {1, · · · , n} , so ε is ±1.
But this sign is the same as that for the permutation to bring the
basis to the order dx1 ∧ · · · ∧ dxn , so the overall sign to get both to
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the standard order is positive. Thus we get

?ω ∧ ω =
√
|g|
∑
I

ωI1···IpωI1···Ipε1···n dx
1 ∧ · · · ∧ dxn

=
√
|g| 1

p!
ωµ1···µpωµ1···µp dx

1 ∧ · · · ∧ dxn

=
1

p!
ωµ1···µpωµ1···µp (vol) (17.18)

If we are in a basis where the metric is not diagonal, it is still
symmetric. So we can diagonalize it locally by going to an appro-
priate basis, or set of coordinates, at each point. In this basis, the
components of ω may be ω′µ1···µp , so we can write

?ω ∧ ω =

(
1

p!
ωµ
′
1···µ′pωµ′1···µ′p

)
(vol′) (17.19)

But both factors are invariant under a change of basis. So we can
now change back to our earlier basis, and find Eq. (17.18) even when
the metric is not diagonal. Note that the metric may not be diago-
nalizable globally or even in an extended region.


