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Chapter 19

Stokes’ theorem

We will next discuss a very beautiful result called Stokes’ formula.
This is actually a theorem, but we will not prove it, only state the
result and discuss its applications. So for us it is only a formula, but
still deep and beautiful.
• A submanifold S is a subset of points inM such that any point
in S has an open neighbourhoood inM for which there is some chart
where (n−m) coordinates vanish. S is then m-dimensional. 2

• Suppose U is a region of an oriented manifold M . The bound

ary ∂U of U is a submanifold of dimension n − 1 which divides M
in such a way that any curve joining a point in U with a point in Uc
must contain a point in ∂U .

Now suppose U has an oriented smooth boundary ∂U . Then ∂U
is automatically an oriented manifold, by considering the restrictions
of the charts on U to ∂U .
• Consider a smooth (n − 1) form in M . Stokes’ formula says
that ∫

U

dω =

∫
∂U

ω . (19.1)

If M is a compact manifold with boundary ∂M , this formula can
be applied to all of M . If ω vanishes outside some compact region
we can again set U =M . Also, U can be a submanifold in another
manifold, like a 2-surface in a 3-manifold. 2

Example: Let U = [0, 1] . Then a function f : M → R is a
0-form, and df = f ′(x)dx is a 1-form. Take the orientation of M to
be from 0 to 1. Then ∂M consists of the points x = 0 and x = 1 ,
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74 Chapter 19. Stokes’ theorem

and Stokes’ formula says that ∫
M

df =

∫
∂M

f

i.e.

1∫
0

f ′(x)dx = f(1)− f(0) . (19.2)

Example: Consider a 2-d disk D in R2 , with boundary ∂D .
Take a 1-form A . Then Stokes’ formula says∫

∂D

A =

∫
D

dA . (19.3)

Let us seee this equation in a chart. We can write

A = Ai dx
i

dA = ∂iAj dx
i ∧ dxj (19.4)

A evaluated on ∂D can be written as A

(
d

dt

)
where

d

dt
is tangent

to ∂D . So we can write A

(
d

dt

)
= Ai

dxi

dt
dt , and∫

∂D

Aidx
i =

∫
D

∂iAj dx
i ∧ dxj

=

∫
D

(∂1A2 − ∂2A1) dx
1 ∧ dx2

=

∫
ϕ(D)

(∂1A2 − ∂2A1) d
2x . (19.5)

Similarly for higher forms on higher dimensional manifolds.
• Gauss’ divergence theorem is a special case of Stokes’ the-
orem. Before getting to Gauss’ theorem, we need to make a new
definition. Consider an n-form ω 6= 0 on an n-dimensional manifold.
We can write this in a chart as

ω = fdx1 ∧ · · · ∧ dxn

=
1

n!
fεµ1···µn dx

µ1 ∧ · · · ∧ dxµn . (19.6)
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Given a vector field v , its contraction with ω is

ιvω = ω(v, · · · ) =
1

(n− 1)!
ωµ1µ2···µn v

µ1dxµ2 ∧ · · · ∧ dxµn

= fv1dx2 ∧ · · · ∧ dxn − fv2dx1 ∧ dx3 ∧ · · · ∧ dxn + · · ·
(19.7)

Then we can calculate

d(ιvω) = dω(v, · · · ) = ∂1(fv
1) dx1 ∧ dx2 ∧ · · · ∧ dxn

+∂2(fv
2) dx1 ∧ dx2 ∧ · · · ∧ dxn

+ · · ·+ ∂n(fvn) dx1 ∧ dx2 ∧ · · · ∧ dxn

= ∂µ(fvµ) dx1 ∧ dx2 ∧ · · · ∧ dxn

=
1

f
∂µ(fvµ)ω . (19.8)

In particular, if ω is the volume form, we can write

ω =

√
|g|
n!

εµ1···µndx
µ1 ∧ · · · ∧ dxµn ,

d(ιv(vol)) =
1√
|g|
∂µ(vµ

√
|g|)(vol) . (19.9)

• This is called the divergence of the vector field v .
There is another expression for the divergence. Remember that

given a vector field v , we can define a one-form, also called v , with
components defined with the help of the metric,

vµ = gµµ′v
µ′ (19.10)

Consider ?v , which has components

(?v)µ1···µn−1 =
√
|g|εµ1···µn−1µg

µµ′vµ′

=
√
|g|εµ1···µn−1µv

µ . (19.11)

⇒ ?v =

√
|g|

(n− 1)!
εµ1···µn−1µv

µdxµ1 ∧ · · · ∧ dxµn−1

d?v = ∂µn

( √
|g|

(n− 1)!
εµ1···µn−1µv

µ

)
dxµn ∧ dxµ1 ∧ · · · ∧ dxµn−1

=
(−1)n−1

(n− 1)!
εµ1···µn−1µ

(
∂µn

(√
|g|vµ

))
dxµ1 ∧ · · · ∧ dxµn

(19.12)
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76 Chapter 19. Stokes’ theorem

Both µ and µn must be different from (µ1, · · · , µn−1) , so µ = µn .
Thus in each term of the sum, the choice of (µ1, · · · , µn−1) auto-
matically selects µn(= µ) , so a sum over (µ1, · · · , µn) overcounts n
times. So we can write

d?v =
(−1)n−1

(n− 1)!
εµ1···µn

(
∂µ

(√
|g|vµ

))
dxµ1 ∧ · · · ∧ dxµn

= (−1)n−1
1√
|g|
∂µ(
√
|g|vµ)(vol) . (19.13)

Since this is an n-form in n dimensions, we can calculate from
here that

?d?v =
(−1)n+s−1√

|g|
∂µ(
√
|g|vµ) , (19.14)

where as before s is the signature of the manifold, i.e. the number
of negative entries in the metric in a locally diagonal form.

Let us now go back to Stokes’ formula. Take a region U of M
which is covered by a single chart and has an orientable boundary
∂U as before. Then we find∫

U

1√
|g|
∂µ(
√
|g|vµ)(vol) =

∫
U

d(ιv(vol))

=

∫
∂U

ιv(vol) . (19.15)

Now suppose b is a 1-form normal to ∂U , i.e. b

(
d

dt

)
= 0 for any

vector
d

dt
tangent to ∂U , and α is an (n− 1)-form such that b∧α =

(vol) . Since all n-forms are proportional, α always exists. For the
same reason, if b 6= 0 on ∂U , it is unique up to a factor. And b 6= 0 on
∂U because ∂U is defined as the submanifold where one coordinate is

constant, usually set to zero, so that one component of
d

dt
vanishes

at any point on ∂U , and therefore the corresponding component of
b can be chosen to be non-zero.

So b is unique up to a rescaling b→ b′ = fb for some nonvanishing
function f . But we can always scale α→ α′ = f

−1
α so that b′∧α′ =

b ∧ α . Further, if we restrict α to ∂U , i.e. if α acts only on tangent
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vectors to ∂U , we find that α is an (n − 1)-form on an (n − 1)-
dimensional manifold, so it is unique up to scaling. Therefore, α is
unique once b is given. Finally, for any vector v ,

ιv(vol)
∣∣∣
∂U

= ιv(b ∧ α)
∣∣∣
∂U

(19.16)

is an (n− 1)-form on ∂U which acts only on vectors tangent to ∂U .
Then

ιv(b ∧ α)
∣∣∣
∂U

= b(v)α
∣∣∣
∂U

(19.17)

because all terms of the form b ∧ ιvα gives zero for any choice of
(n− 1) vectors on ∂U .

Then we have∫
U

1√
|g|
∂µ(
√
|g|vµ)(vol) =

∫
∂U

b(v)α

=

∫
∂U

(nµv
µ)α . (19.18)

Usually b is taken to have norm 1. Then α is the volume form on
∂U , and we can write∫

U

1√
|g|
∂µ(
√
|g|vµ)(vol) =

∫
∂U

(nµv
µ)
√
|g(∂U)|dn−1x . (19.19)


