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Chapter 20

Lie groups

We start a brief discussion on Lie groups, mainly with an eye to
their structure as manifolds and also application to the theory of
fiber bundles.
• A Lie group is a group which is also an analytic manifold. 2

We did not define a Lie group in this way in Chap. 2 , but said that
a Lie group was a manifold in which the group product is analytic in
the group parameters, or alternatively the group product and group
inverse are both C∞ .

The definition above comes from a theorem that given a con-
tinuous group G in which the group product and group inverse are
C∞ functions of the group parameters, it is always possible to find
a set of coordinate charts covering G such that the overlap functions
are real analytic, i.e. are C∞ and their Taylor series at any point
converge to their respective values.
• A Lie subgroup of G is a subset H of G which is a subgroup of
G , a submanifold of G , and is a topological group, i.e., a topological
space in which the group product and group inverse are continuous
maps. 2

• Sometimes this expressed in terms of another definition. P is
an immersed submanifold of M if the inclusion map j : P ↪→M
is smooth and at each point p ∈ P its differential djp is one to one,
with djp being defined by djp : TpP → Tj(p)M such that djp(v)(g) =
v(g · jp) . 2

We have mentioned some specific examples of Lie groups earlier.
Let us mention some more examples.

Example: Rn is a Lie group under addition. So is Cn .
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Example: Rn\{0} is a Lie group under multiplication. So is
Cn\{0} .

Example: The direct product of two Lie groups is itself a Lie
group, with multiplication (g1, h1)(g2, h2) = (g1g2, h1h2) . 2

Example: The set of all n × n real invertible matrices forms
a group under matrix multiplication, called the General Linear

group GL(n,R) . This is also the space of all invertible linear maps
of Rn to itself. We can similarly define GL(n,C) . 2

The next few examples are Lie subgroups of GL(n,R) .
Example: The Special Linear group SL(n,R) is the subset

of GL(n,R) for which all the matrices have determinant +1 , i.e.,
SL(n,R) = {A ∈ GL(n,R)| detA = 1} . One can define SL(n,C) in
a similar manner. 2

Example: The Orthogonal group O(n) = {R ∈ GL(n,R) |
RTR = I} . 2

Example: The Unitary group U(n) = {U ∈ GL(n,C) | U †U =
I} . 2

Example: The Symplectic group Sp(n) , defined as the sub-
group of U(2n) given by ATJA = J , where

J =

(
0 −1n×n

1n×n 0

)
2

Example: O(p, q) = {R ∈ GL(p+q,R) | RTηp,qR = ηp,q} , where

ηp,q =

(
1p×p 0

0 −1q×q

)
2

Example: U(p, q) = {U ∈ GL(p+ q,C) | U †ηp,qU = ηp,q} .
Example The Special Orthogonal group SO(n) is the sub-

group of O(n) for which determinant is +1. Similarly, the Special

unitary group SU(n) is the subgroup of U(n) with determinant
+1. Similarly for SO(p.q) and SU(p, q) .

The group U(1) is the group of phases U(1) = {eiφ|φ ∈ R} . As a
manifold, this is isomorphic to a circle S1 .

The group SU(2) is isomorphic as a manifold to a three-sphere
S3 . These are the only two spheres (other than the point S0) which
admit a Lie group structure.
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80 Chapter 20. Lie groups

An important property of a Lie group is that the tangent space
of any point is isomorphic to the tangent space at the identity by
an appropriate group operation. Of course, the tangent space at any
pooint of a manifold is isomorphic to the tangent space at any other
point. For Lie groups, the isomorphism between the tangent spaces
is induced by group operations, so is in some sense natural.

For any Lie group G , we can define diffeomorphisms of G labelled
by elements g ∈ G , called
• Left translation lg : G→ G g′ 7→ gg′ ; 2

• Right translation rg : G→ G g′ 7→ g′g . 2

These can be defined for any group, but are diffeomorphisms for
Lie groups. We see that

lg−1 lg(g
′) = lg−1(gg′) = g−1gg′ = g′ ⇒ (lg)

−1 = lg−1

rg−1rg(g
′) = rg−1(g′g) = g′gg−1 = g′ ⇒ (rg)

−1 = rg−1 . (20.1)

It is easy to check that

lg1 lg2 = lg1g2 rg1rg2 = rg2g1 (20.2)

Further, lg−1(g) = e and rg−1(g) = e , so any element of G can be
moved to the identity by a diffeomorphism. The tangent space at
the identity forms a Lie algebra, as we shall see. The left and right
translations lead to diffeomorphisms which relate the tangent space
at any point to this Lie algebra, as we shall see now.


