Chapter 21

Tangent space at the identity

A point on the Lie group is a group element. So a vector field on
the Lie group selects a vector at each g € G. Since left and right
translations are diffeomorphisms, we can consider the pushforwards
due to them.

e A left-invariant vector field X is invariant under left ttrans-
lations, i.e.,

X =lg(X) VgeG. (21.1)

In other words, the vector (field) at ¢’ is pushed forward by [, to the
same vector (field) at l4(g’):

loo(Xy) = Xyy Vg,9' € G. (21.2)
e  Similarly, a right-invariant vector field X is defined by
X = rg(X) Vg e G,
Le.  1e(Xy) = Xgyg Vg, € G. (21.3)

A left or right invarian vector field has the important property
that it is completely determined by its value at the identity element
e of the Lie group, since

lpe (X)) = X, Vge @, (21.4)

and similarly for right-invariant vector fields.
Write the set of all left-invariant vector fields on G as L(G) . Since
the push-forward is linear, we get

lgx(aX +Y) = alg X + 1Y, (21.5)
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so that if both X and Y are left-invariant,
lg«(aX +Y)=aX+Y, (21.6)

so the set of left-invariant vector fields form a real vector space.
We also know that push-forwards leave the Lie algebra invariant,
ie., for lg,

(19 X, 1gY] = 1go[ X, Y] (21.7)
Thus if X,Y € L(G),
lge [ X Y] = [1g« X, 1g:Y] = [X Y], (21.8)

so [X,Y] € L(G). Thus the set of all left-invariant vector fields on
G forms a Lie algebra.
e  This L(G) is called the Lie algebra of G. O

The dimension of this Lie algebra is the same as that of G because
of the

Theorem: L(G) as a real vector space is isomorphic to the tan-
gent space T.G to G at the identity of G.

Proof: We will show that left translation leads to an isomor-
phism.

For X € T.G, define the vector field LX on G by

LX\g =L) =1uX Vg € G (21.9)
Then for all g,¢' € G,

(L)) = lgi(lge X) = lgge X = LY, . (21.10)
Note that for two diffeomorphisms 1, o, we can write

(P15 (p2:0)) (f) = (p2:0)(f 0 1)
= v(fop10p2)
= ((¢1 0 92)0)(f)
= p1lp2v) = (p10p2)iv (21.11)

Since left translation is a diffeomorphism,

lg/*(lg*X) = (lg/ o lg)*X = (lg/g*)X (21.12)
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So it follows that LX is a left-invariant vector field, and we have a
map T.G — L(G). Since the pushforward is a linear map, so is the
map X — LX . We need to prove that this map is 1-1 and onto.

If LX = LY, we have

LY=L Vgea, (21.13)
SO
ly-1.Ly =11, L) = X=Y (eT.G). (21.14)

So the map X — L¥ is 1-1.
Now given L , define X, € T,G by

Xe=1y1,L)  foranyg e G. (21.15)
We can also write
X, =LX. (21.16)
Then
lgxXe = lgilyg—1, Ly = L) . (21.17)

So the map X — L is onto.
Then we can define a Lie bracket on T.G by

[w,v] = [L",L"]],. (21.18)

The Lie algebra of vectors in T.G based on this bracket is thus the
Lie algebra of the group G . It follows that

dim L(G) = dimT.G = dim G . (21.19)

Note that since commutators are defined for vector fields and not
vectors, the Lie bracket on T.G has to be defined using the com-
mutator of left-invariant vector fields on G and the isomorphism
T.G + L(G).

e If for an n-dimensional Lie group G, {t;,--- ,t,} is a set of basis
vectors on T.G ~ L(G), the Lie bracket of any pair of these vectors
must be a linear combination of them, so

[ti ts] = Chits (21.20)
k
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for some set of real numbers C’ikj . These numbers are known as the
structure constants of the Lie group or algebra. O

Since L(G) is a Lie algebra, with the Lie bracket as the product,
the Lie bracket is antisymmetric,

[ti t5] = [t;, ]
k k
=  Ck=CF, (21.21)

and the structure constants satisfy the Jacobi identity

[ti ) [tj 7tkH + [tj ) [tk 7ti]] + [tk s [ti ,tj]] =0
= CLOR+CLCT+CLCH =0, (21.22)

A similar construction can be done using a set of right-invariant
vector fields defined by

RY :=ryuX  forX € T.G (21.23)

and its ‘inverse’ X, = 7“971*R§( .



