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Chapter 22

One parameter subgroups

There is another characterization of TeG for a Lie group G as the set
of its one parameter subgroups, which we will now define. This is
also called the “infinitesimal” description of a Lie group, and what
Lie called an infinitesimal group.
• A one parameter subgroup of a Lie group G is a smooth
homomorphism from the additive group of real numbers to G , γ :
(R,+) → G . Then γ : R → G is a curve such that γ(s + t) =
γ(s)γ(t) , γ(0) = e , and γ(−t) = γ(t)−1 . 2

Also, since this is a homomorphism, the one parameter subgroup
is Abelian.

Example: For G = (R\{0},×) the multiplicative group of non-
zero real numbers, γ(t) = et is a 1-p subgroup.

Example: G = U(1) , γ(t) = eit .

Example: G = SU(2) , γ(t) =

(
cos t sin t
− sin t cos t

)
.

Example: G = GL(3,R) , γ(t) =

 cos t sin t 0
− sin t cos t 0

0 0 et

 .

The relation between 1-p subgroups and and TeG is given by the
Theorem: The map γ 7→ γ̇(0) = γ̇

∣∣
e

defines a 1-1 correspon-
dence between 1-p subgroups of G, and TeG .

Proof: For any X ∈ TeG define LX = lg∗X as the corresponding
left-invariant vector field. We need to find a smooth homomorophism
from R to G using LX . This homomorphism is provided by the flow
or integral curve of LX , but let us work this out in more detail.
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86 Chapter 22. One parameter subgroups

Denote the integral curve of LX by γX(t) , i.e.,

γX(0) = LXe = X

and γ̇X(t) = LXγ(t) = lγ(t)∗X (22.1)

Since LX is left-invariant, lg′∗L
X
g = LXg′g . Consider the equation

d

dt
γ(t) = LXγ(t) = lγ(t)∗X ≡ γ∗

(
d

dt

)∣∣∣∣
t

. (22.2)

Given some τ , replace γ(t) by γ(τ + t) to get

γ(τ + t) = lγ(τ+t)∗X . (22.3)

Remember that γ(t) is an element of the group for each t . Now
replace γ(t) in Eq. (22.2) by γ(τ)γ(t) to get(

γ(τ)γ(t)
)
∗

(
d

dt

)
= LXγ(τ)γ(t) (22.4)

We see that γ(t+τ) and γ(τ)γ(t) are both integral curves of LX , i.e.
both satisfy the equation of the integral curve of LX , and at t = 0
both curves are at the point γ(τ) . Thus by uniqueness these two are
the same curve,

γ(τ + t) = γ(τ)γ(t) , (22.5)

and t 7→ γ(t) is the homomorphism R→ G that we are looking for.
Thus for each X ∈ TeG we find a 1-p subgroup γ(t) given by the

integral curve of LX ,

γ̇(t) = LXγ(t) = lγ(t)∗X , (22.6)

where, as mentioned earlier, (γ̇(0) = X) . 2

In a compact connected Lie group G , every element lies on some
1-p subgroup. This is not true in a non-compact G , i.e. there are
elements in G which do not lie on a 1-p subgroup. However, an
Abelian non-compact group will always have a 1-p subgroup, so this
remark applies only to non-Abelian non-compact groups.

For matrix groups, every 1-p subgroup is of the form

γ(t) =
{
etM

∣∣∣M fixed, t ∈ R
}
. (22.7)
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Let us see why. Suppose {γ(t)} is a 1-p subgroup of the matrix
group. Then γ(t) is a matrix for each t , and

γ(s)γ(t) = γ(s+ t) . (22.8)

Differentiate with respect to s and set s = 0 . Then

γ̇(0)γ(t) = γ̇(t) . (22.9)

Write γ̇(0) = M . Since G is a matrix group, M is a matrix. Then
the unique solution for γ is

γ(t) = etM . (22.10)

The properties of M are determined by the properties of the group
and vice versa, not every matrix M will generate any group.

The allowed matrices {M} for a given group G are the {γ̇(0)} for
all the 1-p subgroups γ(t) , so these are in fact the tangent vectors
at the identity. The allowed matrices {M} for a given matrix group
G thus form a Lie algebra with the Lie bracket being given by the
matrix commutator. This Lie algebra is isomorphic to the Lie algebra
of the group G . (We will not a give a proof of this here.)

We can find the Lie algebra of a matrix group by considering
elements of the form γ(t) = etM for small t , i.e.,

γ(t) = I + tM (22.11)

for small t . Conversely, once we are given, or have found, a Lie
algebra with basis {ti} , we can exponentiate the Lie algebra to find
the set of 1-p subgroups{

γ(a) = exp aiti
}

(22.12)

• This is the infinitesimal group, for compact connected groups
this is identical to the Lie group itself. So in such cases, the entire
group can be generated by exponentiating the Lie algebra. Non-
compact groups cannot be written as the exponential of the Lie al-
gebra in general. 2

Example: Consider SO(N) , the group of N×N real orthogonal
matrices R with RTR = I ,detR = 1 . Write R = I + A , then AT =
−A , i.e. the Lie algebra is spanned by N × N real antisymmetric
matrices. Let us construct a basis for this algebra.
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88 Chapter 22. One parameter subgroups

An N × N antisymmetric matrix has N(N − 1)/2 independent
elements. So we define N(N − 1)/2 independent antisymmetric ma-
trices, labelled by µ, ν = 1, · · · , N ,

Mµν = −Mνµ µ , ν are not matrix indices

(Mµν)ρσ = (Mµν)σρ , ρ , σ are matrix indices . (22.13)

A convenient choice for the basis is given by

(Mµν)ρσ = δµρδνσ − δµσδνρ . (22.14)

Then the commutators are calculated to be

[Mµν ,Mαβ] = δναMµβ − δµαMνβ + δµβMνα − δνβMµα . (22.15)

This defines the Lie algebra.
Example: For SU(N) , the group of N × N unitary matri-

ces U with U †U = I , detU = 1 , the 1-p subgroups are given by
γ(t) = etM with M † + M = 0 in the same way as above, and
det(I + tM) = 1 ⇒ TrM = 0 . So the SU(N) Lie algebra consists
of traceless antihermitian matrices. Often the basis is multiplied by
i to write γ(a) = exp(iajtj) , where tj are now Hermitian matrices,
with

[ti , tj ] = ifabctc . (22.16)


