
c ©
A

m
ita

bh
a

La
hi

ri:
Le

ct
ur

e
N

ot
es

on
D

iff
er

en
tia

lG
eo

m
et

ry
fo

rP
hy

si
ci

st
s

20
11

Chapter 3

Tangent vectors

Vectors on a manifold are to be thought in terms tangents to the
manifold, which is a generalization of tangents to curves and sur-
faces, and will be defined shortly. But a tangent to a curve is like
the velocity of a particle at that point, which of course comes from
motion along the curve, which is its trajectory. And motion means
comparing things at nearby points along the trajectory. And com-
paring functions at nearby points leads to differentiation. So in order
to get to vectors, let us first start with the definitions of these things.
• A function f : M → R is differentiable at a point P ∈ M if
in a chart ϕ at P, the function f ◦ ϕ−1 : Rn → R is differentiable at
ϕ(P ). 2

This definition does not depend on the chart. If f ◦ ϕα−1 is
differentiable at ϕα(P ) in a chart (Uα, ϕα) at P , the f ◦ ϕβ−1 is
differentiable at ϕβ(P ) for any chart (Uβ, ϕβ) because

f ◦ ϕβ−1 = (f ◦ ϕα−1) ◦ (ϕα ◦ ϕβ−1) (3.1)

and the transition functions (ϕα ◦ ϕβ−1) are differentiable.
This should be thought of as a special case of functions from one

manifold to another. Consider two manifoldsM and N of dimension
m and n, and a mapping f :M→N , P 7→ Q. Consider local charts
(U,ϕ) around P and (W,ψ) around Q. Then ψ ◦ f ◦ ϕ−1 is a map
from Rm → Rn and represents f in these local charts.
• f is differentiable at P if ψ ◦ f ◦ϕ−1 is differentiable at ϕ(P ).
In other words, f is differentiable at P if the coordinates yi = f i(xµ)
of Q are differentiable functions of the coordinates xµ of P . 2

• If f is a bijection (i.e. one-to-one and onto) and f and f−1 are
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10 Chapter 3. Tangent vectors

both differentiable, we say that f is a diffeomorphism and thatM
and N are diffeomorphic. 2

In all of these definitions, differentiable can be replaced by Ck or
smooth.
• Two Lie groups are isomorphic if there is a diffeomorphism
between them which is also a group homomorphism. 2

• A curve in a manifold M is a map γ of a closed interval R
to M. (This definition can be given also when M is a topological
space.) 2

We will take this interval to be I = [0, 1] ⊂ R. Then a curve is a
map γ : I →M. If γ(0) = P and γ(1) = P ′, for some γ, we say that
γ joins P and P ′.
• A manifoldM is connected (actually arcwise connected)1 if
any two points in it can be joined by a continuous curve in M. 2

As for any map, a curve γ is called smooth iff its image in a chart
is smooth in Rn, i.e., iff ϕ ◦ γ : I → Rn is smooth in Rn.

Note that the definition of a curve implies that it is parametrized.
So the same collection of points in M can stand for two different
curves if they have different parametrizations.

We are now ready to define tangent vectors and the tangent space
to a manifold. There are different ways of defining tangent vectors.
i) Coordinate approach: Vectors are defined to be objects satis-

fying certain transformation rules under a change of chart, i.e.
coordinate transformation, (Uα, ϕα)→ (Uβ, ϕβ).

ii) Derivation approach: A vector is defined as a derivation of func-
tions on the manifold. This is thinking of a vector as defining
a “directional derivative”.

iii) Curves approach: A vector tangent to a manifold is tangent to
a curve on the manifold.

The approaches are equivalent in the sense that they end up defin-
ing the same objects and the same space. We will follow the third
approach, or perhaps a mix of the second and the third approaches.
Later we will briefly look at the derivation approach more carefully
and compare it with the way we have defined tangent vectors.

Consider a smooth function f : M → R. Given a curve γ :
I → M, the map f ◦ γ : I → R is well-defined, with a well-defined

1It can be shown that an arcwise connected space is connected.
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11

derivative. The rate of change of f along γ is written as
df

dt
.

Suppose another curve another curve µ(s) meets γ(t) at some
point P , where s = s0 and t = t0, such that

d

dt
(f ◦ γ)

∣∣∣
P

=
d

ds
(f ◦ µ)

∣∣∣
P

∀f ∈ C∞(M) (3.2)

That is, we are considering a situation where two curves are tangent
to each other in geometric and parametric sense. Let us introduce a
convenient notation. In any chart ϕ containing the point P, let us
write ϕ(P ) = (x1, · · · , xn). Let us write f ◦ γ = (f ◦ ϕ−1) ◦ (ϕ ◦ γ),
so that the maps are

f ◦ ϕ−1 : Rn → R, x 7→ f(x) or f(xi) (3.3)

ϕ ◦ γ : I → Rn, t 7→ {xi(γ(t))}. (3.4)

The last are the coordinates of the curve in Rn.
Using the chain rule for differentiation, we find

d

dt
(f ◦ γ) =

d

dt
f(x(γ(t))) =

∂f

∂xi
dxi(γ(t))

dt
. (3.5)

Similarly, for the curve µ we find

d

ds
(f ◦ µ) =

d

ds
f(x(µ(s))) =

∂f

∂xi
dxi(µ(s))

ds
. (3.6)

Since f is arbitrary, we can say that two curves γ, µ have the same
tangent vector at the point P ∈M (where t = t0 and s = s0) iff

dxi(γ(t))

dt

∣∣∣∣
t=t0

=
dxi(µ(s))

ds

∣∣∣∣
s=s0

. (3.7)

We can say that these numbers completely determine the rate of
change of any function along the curve γ or µ at P. So we can define
the tangent to the curve.
• The tangent vector to a curve γ at a point P on it is defined
as the map

γ̇P : C∞(M)→ R, f 7→ γ̇P (f) ≡ d

dt
(f ◦ γ)|P . (3.8)

As we have already seen, in a chart with coordinates {xi} we can
write using chain rule

γ̇P (f) =
dxi(γ(t))

dt

∂f

∂xi

∣∣∣∣
ϕ(P )

(3.9)
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12 Chapter 3. Tangent vectors

The numbers
dxi(γ(t))

dt

∣∣∣∣
ϕ(P )

are thus the components of γ̇P . We will

often write a tangent vector at P as vP without referring to the curve
it is tangent to.

We note here that there is another description of tangent vectors
based on curves. Let us write γ ∼ µ if γ and µ are tangent to each
other at the point P . It is easy to see, using Eq. (3.7) for example,
that this relation ∼ is transitive, reflexive, and symmetric. In other
words, ∼ is an equivalence relation, for which the equivalence class
[γ] contains all curves tangent to γ (as well as to one another) at P .
• A tangent vector at P ∈ M is an equivalence class of curves
under the above equivalence relation. 2

The earlier definition is related to this by saying that if a vector
vP is tangent to some curve γ at P , i.e. if vP = γ̇P , we can write
vP = [γ].


