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Chapter 5

Dual space

• The dual space T ∗PM of TPM is the space of linear mappings
ω : TPM→ R. 2

We will write the action of ω on vP ∈ TPM as ω(vP ) or sometimes
as 〈ω | vP 〉 .

Linearity of the mapping ω means

ω(uP + avP ) = ω(uP ) + aω(vP ) , (5.1)

∀uP , vP ∈ TPM and a ∈ R .

The dual space is a vector space under the operations of vector ad-
dition and scalar multiplication defined by

a1ω1 + a2ω2 : vP 7→ a1ω1(vP ) + a2ω2(vP ) . (5.2)

• The elements of T ∗PM are called dual vectors, covectors,
cotangent vectors etc. 2

A dual space can be defined for any vector space V as the space of
linear mappings V → R (or V → C if V is a complex vector space).

Example:

Vector Dual vector
column vectors row vector
kets |ψ〉 bras 〈φ|
functions linear functionals, etc.2

• Given a function on a manifold f : M → R , every vector at
P produces a number, vP (f) ∈ R ∀vP ∈ TPM . Thus f defines a
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covector df , given by df(vP ) = vP (f) called the differential or
gradient of f . 2

Since vP is linear, so is df ,

df(vP + awP ) = (vP + awP )(f)

= vP (f) + awP (f) (5.3)

∀vP , wP ∈ TPM, a ∈ R .

Thus df ∈ T ∗PM .
Proposition: T ∗PM is also n-dimensional.
Proof: Consider a chart ϕ with coordinate functions xi . Each xi

is a smooth function xi :M→ R . then the differentials dxi satisfy

dxi
(

∂

∂xj

)
P

=

(
∂

∂xj

)
P

(xi) =
∂

∂xj
(
xi ◦ ϕ−1

)∣∣∣∣
ϕ(P )

= δij . (5.4)

The differentials dxi are covectors, as we already know. So we
have constructed n covectors in T ∗PM . Next consider a linear combi-
nation of these covectors, ω = ωidx

i. If this vanishes, it must vanish
on every one of the basis vectors. In other words,

ω = 0 ⇒ ω

(
∂

∂xj

)
P

= 0

⇒ ωidx
i

(
∂

∂xj

)
P

= 0

⇒ ωiδ
i
j = 0 i.e. ωj = 0 . (5.5)

So the dxi are linearly independent.
Finally, given any covector ω , consider the covector λ = ω −

ω
(

∂
∂xi

)
P

dxi . Then letting this act on a coordinate basis vector, we
get

λ

(
∂

∂xj

)
P

= ω

(
∂

∂xj

)
P

− ω
(
∂

∂xi

)
P

dxi
(

∂

∂xj

)
P

= ω

(
∂

∂xj

)
P

− ω
(
∂

∂xi

)
P

δij = 0∀j (5.6)

So λ vanishes on all vectors, since the

(
∂

∂xj

)
P

form a basis. Thus

the dxi span T ∗PM , so T ∗PM is n-dimensional.
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18 Chapter 5. Dual space

Also, as we have just seen, any covector ω ∈ T ∗PM can be written
as

ω = ωidx
i where ωi = ω

(
∂

∂xi

)
P

, (5.7)

so in particular for ω = df , we get

ωi ≡ (df)i = df

(
∂

∂xi

)
P

=

(
∂f

∂xi

)
ϕ(P )

(5.8)

This justifies the name gradient.
It is straightforward to calculate the effect of switching to another

overlapping chart, i.e. a coordinate transformation. In a new chart
ϕ′ where the coordinates are yi (and the transition functions are thus
yi(x)) we can use Eq. (5.8) to write the gradient of yi as

dyi =

(
∂yi

∂xj

)
P

dxj (5.9)

This is the result of coordinate transformations on a basis of covec-
tors.

Since

{(
∂

∂xi

)
P

}
is the dual basis in TPM to {dxi}, in order

for

{(
∂

∂yi

)
P

}
to be the dual basis to {dyi} we must have

(
∂

∂yi

)
P

=

(
∂xj

∂yi

)
P

(
∂

∂xj

)
P

(5.10)

These formulae can be generalized to arbitrary bases.
Given a vector v, it is not meaningful to talk about its dual, but

given a basis {ea}, we can define its dual basis {ωa} by ωa(eb) = δab .
We can make a change of bases by a linear transformation,

ωa 7→ ω′a = Aa
bω

b , ea 7→ e′a = (A−1)baeb , (5.11)

with A a non-singular matrix, so that ω′a(e′b) = δab .
Given a 1-form λ we can write it in both bases,

λ = λaω
a = λ′aω

′a = λ′aA
a
bω

a , (5.12)

from which it follows that λ′a = (A−1)baλb .
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Similarly, if v is a vector, we can write

v = vaea = v′ae′a = v′a(A−1)baeb , (5.13)

and it follows that va = Aa
bv

b .
• Quantities which transform like λa are called covariant, while
those transforming like va are called contravariant. 2


