Chapter 5

Dual space

• The **dual space** $T_P^* \mathcal{M}$ of $T_P \mathcal{M}$ is the space of linear mappings $\omega : T_P \mathcal{M} \to \mathbb{R}$.

We will write the action of ω on $v_P \in T_P \mathcal{M}$ as $\omega(v_P)$ or sometimes as $\langle \omega | v_P \rangle$.

Linearity of the mapping ω means

$$\omega(u_P + av_P) = \omega(u_P) + a\omega(v_P), \qquad (5.1)$$

$$\forall u_P, v_P \in T_P \mathcal{M} \text{ and } a \in \mathbb{R}.$$

The dual space is a vector space under the operations of vector addition and scalar multiplication defined by

$$a_1\omega_1 + a_2\omega_2 : v_P \mapsto a_1\omega_1(v_P) + a_2\omega_2(v_P) \,. \tag{5.2}$$

• The elements of $T_P^*\mathcal{M}$ are called **dual vectors**, covectors, cotangent vectors etc.

A dual space can be defined for any vector space V as the space of linear mappings $V \to \mathbb{R}$ (or $V \to \mathbb{C}$ if V is a complex vector space). **Example:**

Vector	Dual vector
column vectors	row vector
kets $ \psi\rangle$	bras $\langle \phi $
functions	linear functionals, etc. \Box

• Given a function on a manifold $f : \mathcal{M} \to \mathbb{R}$, every vector at P produces a number, $v_P(f) \in \mathbb{R} \quad \forall v_P \in T_P \mathcal{M}$. Thus f defines a

covector df, given by $df(v_p) = v_p(f)$ called the **differential** or **gradient** of f.

Since v_P is linear, so is df,

$$df(v_P + aw_P) = (v_P + aw_P)(f)$$

= $v_P(f) + aw_P(f)$ (5.3)
 $\forall v_P, w_P \in T_P \mathcal{M}, a \in \mathbb{R}.$

Thus $\mathrm{d} f \in T_P^* \mathcal{M}$.

Proposition: $T_P^*\mathcal{M}$ is also *n*-dimensional.

Proof: Consider a chart φ with coordinate functions x^i . Each x^i is a smooth function $x^i : \mathcal{M} \to \mathbb{R}$. then the differentials dx^i satisfy

$$dx^{i}\left(\frac{\partial}{\partial x^{j}}\right)_{P} = \left(\frac{\partial}{\partial x^{j}}\right)_{P} (x^{i}) = \left.\frac{\partial}{\partial x^{j}} \left(x^{i} \circ \varphi^{-1}\right)\right|_{\varphi(P)} = \delta_{j}^{i}.$$
(5.4)

The differentials dx^i are covectors, as we already know. So we have constructed *n* covectors in $T_P^*\mathcal{M}$. Next consider a linear combination of these covectors, $\omega = \omega_i dx^i$. If this vanishes, it must vanish on every one of the basis vectors. In other words,

$$\omega = 0 \Rightarrow \omega \left(\frac{\partial}{\partial x^{j}}\right)_{P} = 0$$

$$\Rightarrow \omega_{i} dx^{i} \left(\frac{\partial}{\partial x^{j}}\right)_{P} = 0$$

$$\Rightarrow \omega_{i} \delta^{i}_{j} = 0 \quad i.e. \quad \omega_{j} = 0.$$
(5.5)

So the dx^i are linearly independent.

Finally, given any covector ω , consider the covector $\lambda = \omega - \omega \left(\frac{\partial}{\partial x^i}\right)_P dx^i$. Then letting this act on a coordinate basis vector, we get

$$\lambda \left(\frac{\partial}{\partial x^{j}}\right)_{P} = \omega \left(\frac{\partial}{\partial x^{j}}\right)_{P} - \omega \left(\frac{\partial}{\partial x^{i}}\right)_{P} \mathrm{d}x^{i} \left(\frac{\partial}{\partial x^{j}}\right)_{P} = \omega \left(\frac{\partial}{\partial x^{j}}\right)_{P} - \omega \left(\frac{\partial}{\partial x^{i}}\right)_{P} \delta^{i}_{j} = 0 \forall j \qquad (5.6)$$

So λ vanishes on all vectors, since the $\left(\frac{\partial}{\partial x^j}\right)_P$ form a basis. Thus the dx^i span $T_P^*\mathcal{M}$, so $T_P^*\mathcal{M}$ is *n*-dimensional.

Also, as we have just seen, any covector $\omega \in T_P^*\mathcal{M}$ can be written as

$$\omega = \omega_i \mathrm{d}x^i \quad \text{where} \quad \omega_i = \omega \left(\frac{\partial}{\partial x^i}\right)_P,$$
(5.7)

so in particular for $\omega = df$, we get

$$\omega_i \equiv (\mathrm{d}f)_i = \mathrm{d}f \left(\frac{\partial}{\partial x^i}\right)_P = \left(\frac{\partial f}{\partial x^i}\right)_{\varphi(P)} \tag{5.8}$$

This justifies the name gradient.

It is straightforward to calculate the effect of switching to another overlapping chart, i.e. a coordinate transformation. In a new chart φ' where the coordinates are y^i (and the transition functions are thus $y^i(x)$) we can use Eq. (5.8) to write the gradient of y^i as

$$\mathrm{d}y^i = \left(\frac{\partial y^i}{\partial x^j}\right)_P \mathrm{d}x^j \tag{5.9}$$

This is the result of coordinate transformations on a basis of covectors.

Since $\left\{ \left(\frac{\partial}{\partial x^i} \right)_P \right\}$ is the dual basis in $T_P \mathcal{M}$ to $\{ dx^i \}$, in order for $\left\{ \left(\frac{\partial}{\partial y^i} \right)_P \right\}$ to be the dual basis to $\{ dy^i \}$ we must have

$$\left(\frac{\partial}{\partial y^i}\right)_P = \left(\frac{\partial x^j}{\partial y^i}\right)_P \left(\frac{\partial}{\partial x^j}\right)_P \tag{5.10}$$

These formulae can be generalized to arbitrary bases.

Given a vector v, it is not meaningful to talk about its dual, but given a basis $\{e_a\}$, we can define its dual basis $\{\omega^a\}$ by $\omega^a(e_b) = \delta^a_b$.

We can make a change of bases by a linear transformation,

$$\omega^a \mapsto \omega'^a = A^a_b \omega^b, \qquad e_a \mapsto e'_a = (A^{-1})^b_a e_b, \qquad (5.11)$$

with A a non-singular matrix, so that $\omega'^a(e'_b) = \delta^a_b$. Given a 1-form λ we can write it in both bases,

$$\lambda = \lambda_a \omega^a = \lambda'_a \omega'^a = \lambda'_a A^a_b \omega^a \,, \tag{5.12}$$

from which it follows that $\lambda'_a = (A^{-1})^b_a \lambda_b$.

Similarly, if v is a vector, we can write

$$v = v^{a}e_{a} = v'^{a}e'_{a} = v'^{a}(A^{-1})^{b}_{a}e_{b}, \qquad (5.13)$$

and it follows that $v^a = A_b^a v^b$. • Quantities which transform like λ_a are called **covariant**, while those transforming like v^a are called **contravariant**. \Box