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Chapter 7

Pull back and push forward

Two important concepts are those of pull back (or pull-back or pull-
back) and push forward (or push-forward or pushforward) of maps
between manifolds.
• Given manifolds M1,M2,M3 and maps f : M1 → M2 , g :
M2 →M3 , the pullback of g under f is the map f∗g :M1 →M3

defined by

f∗g = g ◦ f . (7.1)

2 So in particular, if M1 and M2 are two manifolds with a map
f : M1 →M2 and g : M2 → R is a function on M2 , the pullback
of g under f is a function on M1 ,

f∗g = g ◦ f . (7.2)

While this looks utterly trivial at this point, this concept will become
increasingly useful later on.
• Given two manifoldsM1 andM2 with a smooth map f :M1 →
M2, P 7→ Q the pushforward of a vector v ∈ TPM1 is a vector
f∗v ∈ TQM2 defined by

f∗v(g) = v(g ◦ f) (7.3)

for all smooth functions g :M2 → R . 2

Thus we can write

f∗v(g) = v(f∗g) . (7.4)
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The pushforward is linear,

f∗(v1 + v2) = f∗v1 + f∗v2 (7.5)

f∗(λv) = λf∗v . (7.6)

And if M1,M2,M3 are manifolds with maps f : M1 → M2 , g :
M2 →M3, it follows that

(g ◦ f)∗ = g∗f∗ , i.e.

(g ◦ f)∗v = g∗f∗v ∀v ∈ TPM1 . (7.7)

Remember that we can think of a vector v as an equivalence class of
curves [γ]. The pushforward of an equivalence class of curves is

f∗v = f∗[γ] = [f ◦ γ] (7.8)

Note that for this pushforward to be defined, we do not need the
original maps to be 1-1 or onto. In particular, the two manifolds may
have different dimensions.

SupposeM1 andM2 are two manifolds with dimension m and n
respectively. So in the respective tangent spaces TPM1 and TQM2

are also of dimension m and n respectively. So for a map f :M1 →
M2, P 7→ Q , the pushforward f∗ will not have an inverse if m 6= n .

Let us find the components of the pushforward f∗v in terms of
the components of v for any vector v. Let us in fact consider, given
charts ϕ : P 7→ (x1, · · · , xm) , ψ : Q 7→ (y1, · · · , yn) the pushforward
of the basis vectors.

For the basis vector
(
∂
∂xi

)
P

, we want the pushforward f∗
(
∂
∂xi

)
P
,

which is a vector in TQM2 , so we can expand it in the basis
(

∂
∂yi

)
Q
,

f∗

(
∂

∂xi

)
P

=

(
f∗

(
∂

∂xi

)
P

)µ( ∂

∂yµ

)
Q

(7.9)

In any coordinate basis, the components of a vector are given by the
action of the vector on the coordinates as in Chap. 4,

vµ
P

= vP (yµ) (7.10)

Thus we can write(
f∗

(
∂

∂xi

)
P

)µ
= f∗

(
∂

∂xi

)
P

(yµ) (7.11)
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26 Chapter 7. Pull back and push forward

But

f∗v(g) = v(g ◦ f) , (7.12)

so

f∗

(
∂

∂xi

)
P

(yµ) =

(
∂

∂xi

)
P

(yµ ◦ f) . (7.13)

But yµ◦f are the coordinate functions of the map f , i.e., coordinates
around the point f(P ) = Q . So we can write yµ ◦ f as yµ(x) , which
is what we understand by this. Thus(

f∗

(
∂

∂xi

)
P

)µ
=

(
∂

∂xi

)
P

(yµ ◦ f) =
∂yµ(x)

∂xi

∣∣∣∣
P

. (7.14)

Because we are talking about derivatives of coordinates, these are
actually done in charts around P and Q = f(P ) , so the chart maps
are hidden in this equation.
• The right hand side is called the Jacobian matrix (of yµ(x) =
yµ ◦ f with respect to xi). Note that since m and n may be unequal,
this matrix need not be invertible and a determinant may not be
defined for it. 2

For the basis vectors, we can then write

f∗

(
∂

∂xi

)
P

=
∂yµ(x)

∂xi

∣∣∣∣
P

(
∂

∂yµ

)
f(P )

(7.15)

Since f∗ is linear, we can use this to find the components of (f∗v)Q
for any vector vP ,

f∗vP = f∗

[
vi
P

(
∂

∂xi

)
P

]
= vi

P
f∗

(
∂

∂xi

)
P

= vi
P

∂yµ(x)

∂xi

∣∣∣∣
P

(
∂

∂yµ

)
f(P )

(7.16)

⇒ (f∗vP )µ = vi
P

∂yµ(x)

∂xi

∣∣∣∣
P

. (7.17)

Note that since f∗ is linear, we know that the components of f∗v
should be linear combinations of the components of v , so we can
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already guess that (f∗vP )µ = Aµi v
i
P

for some matrix Aµi . The matrix
is made of first derivatives because vectors are first derivatives.

Another example of the pushforward map is the following. Re-
member that tangent vectors are derivatives along curves. Suppose
vP ∈ TPM is the derivative along γ . Since γ : I → M is a map,
we can consider pushforwards under γ , of derivatives on I . Thus for
γ : I →M , t 7→ γ(t) = P , and for some g :M→ R ,

γ∗

(
d

dt

)
t=0

g =
d

dt
(g ◦ γ)|t=0

= γ̇P (g)|t=0 = vP (g) , (7.18)

so

γ∗

(
d

dt

)
t=0

= vP (7.19)

• We can use this to give another definition of integral curves.
Suppose we have a vector field v onM . Then the integral curve of v
passing through P ∈ M is a curve γ : t 7→ γ(t) such that γ(0) = P
and

γ∗

(
d

dt

)
t

= v|γ(t) (7.20)

for all t in some interval containing P . 2

Even though in order to define the pushforward of a vector v
under a map f , we do not need f to be invertible, the pushforward
of a vector field can be defined only if f is both one-to-one and onto.

If f is not one-to-one, different points P and P ′ may have the
same image, f(P ) = Q = f(P ′) . Then for the same vector field v we
must have

f∗v|Q = f∗(vP ) = f∗(vP ′ ) , (7.21)

which may not be true. And if f :M→ N is not onto, f∗v will be
meaningless outside some region f(M) , so f∗v will not be a vector
field on N .

If f is one-to-one and onto, it is a diffeomorphism, in which case
vector fields can be pushed forward, by the rule

(f∗v)f(P ) = f∗ (vP ) . (7.22)


