Chapter 7

Pull back and push forward

Two important concepts are those of pull back (or pull-back or pullback) and push forward (or push-forward or pushforward) of maps between manifolds.

• Given manifolds $\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3$ and maps $f : \mathcal{M}_1 \to \mathcal{M}_2, g : \mathcal{M}_2 \to \mathcal{M}_3$, the **pullback** of g under f is the map $f^*g : \mathcal{M}_1 \to \mathcal{M}_3$ defined by

$$f^*g = g \circ f \,. \tag{7.1}$$

 \square So in particular, if \mathcal{M}_1 and \mathcal{M}_2 are two manifolds with a map $f: \mathcal{M}_1 \to \mathcal{M}_2$ and $g: \mathcal{M}_2 \to \mathbb{R}$ is a function on \mathcal{M}_2 , the pullback of g under f is a function on \mathcal{M}_1 ,

$$f^*g = g \circ f \,. \tag{7.2}$$

While this looks utterly trivial at this point, this concept will become increasingly useful later on.

• Given two manifolds \mathcal{M}_1 and \mathcal{M}_2 with a smooth map $f : \mathcal{M}_1 \to \mathcal{M}_2, P \mapsto Q$ the **pushforward** of a vector $v \in T_P \mathcal{M}_1$ is a vector $f_*v \in T_Q \mathcal{M}_2$ defined by

$$f_*v(g) = v(g \circ f) \tag{7.3}$$

for all smooth functions $g: \mathcal{M}_2 \to \mathbb{R}$. \Box Thus we can write

$$f_*v(g) = v(f^*g).$$
 (7.4)

The pushforward is linear,

$$f_*(v_1 + v_2) = f_*v_1 + f_*v_2 \tag{7.5}$$

$$f_*(\lambda v) = \lambda f_* v \,. \tag{7.6}$$

And if $\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3$ are manifolds with maps $f : \mathcal{M}_1 \to \mathcal{M}_2, g : \mathcal{M}_2 \to \mathcal{M}_3$, it follows that

$$(g \circ f)_* = g_* f_*, \qquad i.e.$$

$$(g \circ f)_* v = g_* f_* v \qquad \forall v \in T_P \mathcal{M}_1.$$
(7.7)

Remember that we can think of a vector v as an equivalence class of curves $[\gamma]$. The pushforward of an equivalence class of curves is

$$f_*v = f_*[\gamma] = [f \circ \gamma] \tag{7.8}$$

Note that for this pushforward to be defined, we do not need the original maps to be 1-1 or onto. In particular, the two manifolds may have different dimensions.

Suppose \mathcal{M}_1 and \mathcal{M}_2 are two manifolds with dimension m and n respectively. So in the respective tangent spaces $T_P \mathcal{M}_1$ and $T_Q \mathcal{M}_2$ are also of dimension m and n respectively. So for a map $f : \mathcal{M}_1 \to \mathcal{M}_2, P \mapsto Q$, the pushforward f_* will not have an inverse if $m \neq n$.

Let us find the components of the pushforward f_*v in terms of the components of v for any vector v. Let us in fact consider, given charts $\varphi : P \mapsto (x^1, \dots, x^m), \psi : Q \mapsto (y^1, \dots, y^n)$ the pushforward of the basis vectors.

For the basis vector $\left(\frac{\partial}{\partial x^i}\right)_P$, we want the pushforward $f_*\left(\frac{\partial}{\partial x^i}\right)_P$, which is a vector in $T_Q\mathcal{M}_2$, so we can expand it in the basis $\left(\frac{\partial}{\partial y^i}\right)_Q$,

$$f_*\left(\frac{\partial}{\partial x^i}\right)_P = \left(f_*\left(\frac{\partial}{\partial x^i}\right)_P\right)^\mu \left(\frac{\partial}{\partial y^\mu}\right)_Q \tag{7.9}$$

In any coordinate basis, the components of a vector are given by the action of the vector on the coordinates as in Chap. 4,

$$v_{P}^{\mu} = v_{P}(y^{\mu}) \tag{7.10}$$

Thus we can write

$$\left(f_*\left(\frac{\partial}{\partial x^i}\right)_P\right)^\mu = f_*\left(\frac{\partial}{\partial x^i}\right)_P(y^\mu) \tag{7.11}$$

Chapter 7. Pull back and push forward

But

26

$$f_*v(g) = v(g \circ f),$$
 (7.12)

 \mathbf{SO}

$$f_*\left(\frac{\partial}{\partial x^i}\right)_P(y^\mu) = \left(\frac{\partial}{\partial x^i}\right)_P(y^\mu \circ f) . \tag{7.13}$$

But $y^{\mu} \circ f$ are the coordinate functions of the map f, i.e., coordinates around the point f(P) = Q. So we can write $y^{\mu} \circ f$ as $y^{\mu}(\boldsymbol{x})$, which is what we understand by this. Thus

$$\left(f_*\left(\frac{\partial}{\partial x^i}\right)_P\right)^{\mu} = \left(\frac{\partial}{\partial x^i}\right)_P (y^{\mu} \circ f) = \left.\frac{\partial y^{\mu}(\boldsymbol{x})}{\partial x^i}\right|_P.$$
(7.14)

Because we are talking about derivatives of coordinates, these are actually done in charts around P and Q = f(P), so the chart maps are hidden in this equation.

• The right hand side is called the **Jacobian matrix** (of $y^{\mu}(\boldsymbol{x}) = y^{\mu} \circ f$ with respect to x^{i}). Note that since m and n may be unequal, this matrix need not be invertible and a determinant may not be defined for it.

For the basis vectors, we can then write

$$f_*\left(\frac{\partial}{\partial x^i}\right)_P = \left.\frac{\partial y^\mu(\boldsymbol{x})}{\partial x^i}\right|_P \left(\frac{\partial}{\partial y^\mu}\right)_{f(P)}$$
(7.15)

Since f_* is linear, we can use this to find the components of $(f_*v)_Q$ for any vector v_P ,

$$f_* v_P = f_* \left[v_P^i \left(\frac{\partial}{\partial x^i} \right)_P \right]$$
$$= v_P^i f_* \left(\frac{\partial}{\partial x^i} \right)_P$$
$$= v_P^i \left. \frac{\partial y^\mu(\mathbf{x})}{\partial x^i} \right|_P \left(\frac{\partial}{\partial y^\mu} \right)_{f(P)} \qquad (7.16)$$
$$\Rightarrow \qquad (f, v_-)^\mu = v_P^i \left. \frac{\partial y^\mu(\mathbf{x})}{\partial x^i} \right| \qquad (7.17)$$

$$\Rightarrow \qquad (f_*v_P)^{\mu} = v_P^i \left. \frac{\partial g^{\nu}(\boldsymbol{x})}{\partial x^i} \right|_P \,. \tag{7.17}$$

Note that since f_* is linear, we know that the components of f_*v should be linear combinations of the components of v, so we can

already guess that $(f_*v_P)^{\mu} = A_i^{\mu}v_P^i$ for some matrix A_i^{μ} . The matrix is made of first derivatives because vectors are first derivatives.

Another example of the pushforward map is the following. Remember that tangent vectors are derivatives along curves. Suppose $v_P \in T_P \mathcal{M}$ is the derivative along γ . Since $\gamma : I \to \mathcal{M}$ is a map, we can consider pushforwards under γ , of derivatives on I. Thus for $\gamma: I \to \mathcal{M}, t \mapsto \gamma(t) = P$, and for some $g: \mathcal{M} \to \mathbb{R}$,

$$\gamma_* \left(\frac{d}{dt}\right)_{t=0} g = \frac{d}{dt} (g \circ \gamma)|_{t=0}$$
$$= \dot{\gamma}_P(g)|_{t=0} = v_P(g), \qquad (7.18)$$

 \mathbf{SO}

$$\gamma_* \left(\frac{d}{dt}\right)_{t=0} = v_P \tag{7.19}$$

• We can use this to give another definition of integral curves. Suppose we have a vector field v on \mathcal{M} . Then the integral curve of v passing through $P \in \mathcal{M}$ is a curve $\gamma : t \mapsto \gamma(t)$ such that $\gamma(0) = P$ and

$$\gamma_* \left(\frac{d}{dt}\right)_t = v|_{\gamma(t)} \tag{7.20}$$

for all t in some interval containing P.

Even though in order to define the pushforward of a vector vunder a map f, we do not need f to be invertible, the pushforward of a vector field can be defined only if f is both one-to-one and onto.

If f is not one-to-one, different points P and P' may have the same image, f(P) = Q = f(P'). Then for the same vector field v we must have

$$f_*v|_Q = f_*(v_P) = f_*(v_{P'}), \qquad (7.21)$$

which may not be true. And if $f : \mathcal{M} \to \mathcal{N}$ is not onto, f_*v will be meaningless outside some region $f(\mathcal{M})$, so f_*v will not be a vector field on \mathcal{N} .

If f is one-to-one and onto, it is a diffeomorphism, in which case vector fields can be pushed forward, by the rule

$$(f_*v)_{f(P)} = f_*(v_P) . (7.22)$$