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Critical Phenomenon

Near the critical point
The spin-spin correlation function (

� ����� �
�

):

� ��	 � ��	 � � 
 ��	 � ��	 �� �



� ��� �� �
� �

�
� ��� (0)

� � � 
 �
��

�

zero external magentic field

�

correlation length, diverges at the critical
point;

� and � : static critical exponents;

: universal scaling function.
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Scaling and Universality

log-log plot of

� ����� �
�

vs � is a is a straight
line slope 
 � � 
 � .

lattice-spacing � system-size.

� � does not depend on details of the
Hamiltonian.
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Experiment
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Direct Numerical Simulation
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Zoom-in
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Introduction

Homogeneous and Isotropic Turbulence:

Navier-Stokes equation:

��� ��� � �����
� � ��� � � � ��� �	 � 
 �� 
�

���, 	 , �, and 
 are, respectively: Eulerian
velocity, pressure, kinematic viscosity, and
density; and

�

is the external forcing;
incompressibility is imposed via

�
�

��� � �

.

Energy is pumped in at lengths and
dissipation is significant only for lengths .

In the inertial range , , scaling
exponents are independent of both the
forcing term and the viscosity.(Universality)

Energy cascades down the inertial range till it
is dissipated in the dissipation range.
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Structure functions

Order-	 static, longitudinal velocity structure
function.

�
�

� � � � �� � � �
�

� � � �
�

� � � �
� � � � � ��� � ��

�
�
� � � 
 ��� � �� � � �� � � �
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Multiscaling

For

�

in the inertial range we have

�
�

� � �
�

�
��� �

�
� is a nonlinear, convex function of 	

(Multiscaling) as in the She-Leveque formula

� ��
� � �	 � � � � �  
 � �� � � � �	 �
�

which provides a reasonably good
parametrization of experimental and
numerical data for the multiscaling exponents

�
� .
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She-Leveque formula
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Exact relations

�	 � 

(von-Karmann-Howarth)

�
� versus 	 is a convex curve.
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Critical dynamics

Near a critical point the relaxation time
diverges.

� � ��

� dynamic scaling exponent.

Collapse of the whole correlation function.

��
� � � � � � ��
�

� � � � 
 � � � ��

where is the order parameter.
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Data-Collapse (Schematic)
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Each of the above curves in the first plot can be written in

the form

� ��� ��� �

where � � 	�
 �

. Hence we obtain a collapse

if we plot on the horizontal axis

� 	 �

(second plot) instead of

�

itself.
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Simple dynamic scaling

� � �� �
� � � �� �
� � � �

τI(k)

τC(k) t

C(k,t) 
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Dynamic Structure Functions

�
� �

�

� ���� � � �� �
� � �

� � � � �� ���
� �	 �

�
�

� � � � �
� ���
� �	 �

�
� � ��

� �� � �

Clearly �
� �

�

� � � � � � � � �
� � � � � � � �

� � �

. We

normally restrict ourselves to the simple case

� � �

� � � � � � � ��
� � �
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Dynamic scaling
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Dynamic multiscaling

� � depends on exactly how �
� � �

is extracted.

No collapse of full correlation function.
Breakdown of simple dynamic scaling.

� � is a non-linear function of 	 .
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Summary of results

Multifractal model predicts dynamic
multiscaling

� �
��� � �  � �

� � � 
 �
�

�
�

� �
� � � �  � �

� 
 �
� � �� � � �
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Comparing Bridge Relations
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Summary of Results

Fluid turbulence shows dynamic multiscaling.

Breakdown of simple dynamic scaling

Confirmed by numerical simulation in GOY
shell model of turbulence.

Can be generalised.

No real analytical calculation is possible at
present.

If

�
� � 	 � �

(K41), simple dynamic scaling is
obtained, � � � �� �

.
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Questions

1. Can dynamic scaling exponents be
analytically extracted for other similar model ?

2. If answer to 1 is yes, then does multifractal
model predicts correctly for 1.

3. Does equal-time multiscaling implies dynamic
multiscaling ?

4. In general what are the ingredients of
dynamic multiscaling ?
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Answers

Analytically tractable model exists, (Kraichnan
model) but shows simple dynamic scaling,i.e.
equal-time multiscaling does not necessarily
imply dynamic multiscaling.

Multifractal model gives correct result.

If the advecting velocity is multiscaling,
dynamic multiscaling is obtained.

� � need not necessary be a non-linear
function of 	 for dynamic multiscaling.

�

-d passive-vector should have same
dynamic scaling like passive scalar.
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Kraichnan Model
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Equal-time multiscaling

Multiscaling can be analytically (but
perturbative) demonstrated.

�
�

� � �
�

� � �
� .

� � � � �

.

Structure functions have good limits, not
correlation functions.

�

-nd order quantities show dimensional
scaling.

Numerical simulations support analytical
results.
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Kraichnan shell model
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Dynamic structure functions
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�

� � � � �
� � � � � � � �

� � � � � � � � ��
� �

�
� ��
� � �
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� � �
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(-15)

� � �
� � � � ��
� � � �� � �

�
� � �

� � � 
 � � �

Causality
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Exponential decay in time

� � ��
� � � � � � � ��� � � ��� � � �
�

� � � � � �� � � � � � �

�

� � � � �

� � � � � �
� � � � � � � � � � � � � � � � �
�

� � ��

� �
� � � � � � � � � � � � �

�

Similar relations can be obtained for higher
values of 	 but the process is more
cumbersome.
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Numerical Simulation

Viscous term integrated exactly.

Careful numerical scheme for the
white-in-time velocity.
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Summary

� � � 
 �

Collapse for full correlation function.

White-in-time nature of velocity plays major
role.

Equal-time multiscaling does not necessary
imply dynamic multiscaling.

Agrees with multifractal model predictions.

Same analytical calculation applies to the full
3-d Kraichnan model.
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More realistic velocity field

1. For velocity field with simple scaling but not
white-in-time � � � 
 �

(multifractal model).

2. 1 should be true for passive-vector too.
(Kinametic dynamo model)

3. What happens if velocity field is multiscaling ?
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GOY Shell Model

�
�

� �

�� �
�

� �
� �

� � �
�
�

� � � �
� � � �
�
�

� � � �
� � � �
�
�

� � � �
� � � � � �
�

dynamical variables: complex, scalar
velocities �

� , for the shells �.

one-dimensional, logarithmically spaced
wavevectors

�
� , i.e.,

�
� � �

�
� �

, and c.c is
denoted by �

�
� � �
� ,

�
� � 
 � �
� � � , �
� � 
 �  
 � � �
� � �;

chosen to conserve the shell-model
analogues of energy and helicity in the
inviscid, unforced limit; and we use the
standard choice .
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Passive scalar shell model
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Equal-time properties

Equal-time multiscaling.

More intermittent than fluid.

Agrees well with experiments.
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Time-series of
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Time-series of
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Dynamic Multiscaling

Multifractal model predicts:

� �
��� � �  
 �� �

� �

� �
��� � �  
 ��
� �

Breakdown of simple scaling.

Does structure functions with negative
exponents exists ?
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Cumuliative pdf for �
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Negative exponents

For small

� � �
�

,

�� � � � � �
� �

�
� � �
� � �

�

.

� � � �
� �

�
� � �
� �

�
�

�
� �

� � � � �	 � �
�

�	 � 	 � �
�

� �	 ; exists.

But

�
�

� � � for 	 , for 	 � 
  � �

doesnot.

�
��� � for � �

doesnot exists.

Measurement of a static quantity (

��	 �

) gives
us information about existence of a dynamic
quantity

�
� � �.
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Dynamic multiscaling
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Answers

Analytically tractable model exists, (Kraichnan
model) but shows simple dynamic scaling.

Multifractal model gives correct result.

If the advecting field is multiscaling, dynamic
multiscaling is obtained.

� � need not necessary be a non-linear
function of 	 for dynamic multiscaling.

�

-d passive-vector should have same
dynamic scaling like passive scalar.
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